
Generalizing Regularization of Neural
Networks to Correlated Parameter

Spaces
Master of Science Research Dissertation

School of Computer Science & Applied Mathematics
University of the Witwatersrand

Devon Jarvis
1365149

Supervised by Dr. Richard Klein, Prof. Benjamin Rosman
and Prof. Andrew Saxe

September 10, 2021

A dissertation submitted to the Faculty of Science, University of the Witwatersrand,
Johannesburg, in fulfilment of the requirements for the degree of Master of Science

Abstract

A common assumption of regularization techniques used with artificial neural networks is
that their parameters are independently distributed. This is primarily done for simplicity
or to enforce this constraint on the model parameters. In this work we provide theoretical
and empirical results showing that the independence assumption is unreasonable and
unhelpful for regularization. We create and evaluate a novel regularization method called
Metric regularization which adapts the degree of regularization for each parameter of the
network based on how important the parameter is for reducing the loss on the training
data. Importantly Metric regularization accounts for the impact that a parameter has on
the other model parameters to determine how important it is for reducing the loss. Thus,
our novel regularization method adapts to the correlation of the parameters in the model.
We provide theoretical results showing that Metric regularization has the Minimum Mean
Squared Error property. We also evaluate the utility of Metric regularization empirically
and find that it is damaging to the model which is unable to effectively fit the training data
as a result. We instead find that regularization methods which adaptively choose to
regularize only the parameters which are unhelpful for fitting the training data are able to
improve the generalizability of the networks without hindering the training data
performance. We provide justifications for the apparent disconnect between our theoretical
and empirical results for Metric regularization and in so doing shed some light on what
causes a generalization gap with networks as well as the impacts of different initialization
regimes used when training networks.

i

Declaration

I, Devon Jarvis, hereby declare the contents of this research dissertation to be my own work.
This dissertation is submitted for the degree of Master of Science in Computer Science at the
University of the Witwatersrand. This work has not been submitted to any other university,
or for any other degree.

Devon Jarvis
10 September 2021

ii

Contents

Abstract i

Table of Contents iv

1 Introduction 1

2 Background and Related Work 7
2.1 Introduction . 7
2.2 Objective Bayesian Statistics and the Jeffreys Prior 7
2.3 Gradient Descent and Regularization Methods 11
2.4 Riemannian Geometry . 14

3 Theoretical Analysis 19
3.1 Introduction . 19
3.2 Parameters Along a Path are Correlated . 20
3.3 Effect of Cramér-Rao Lower Bound on Gaussian Distribution 22
3.4 Fisher Information of Gaussian Likelihood and Posterior Distributions 23
3.5 Derivation of Metric Regularizer from Bayesian Prior 24
3.6 Equivalence to MMSE for Linear Regression 26
3.7 Equivalence to Maximum A Posteriori . 28
3.8 Computing Multiplication of Hessian by a Vector 29
3.9 Simultaneous Power Method using Hessian Multiplication 30
3.10 Conclusion . 32

4 Experimental Methodology 33
4.1 Introduction . 33
4.2 Datasets . 33

4.2.1 XOR and XORD Datasets . 33
4.2.2 MNIST Datasets . 35
4.2.3 Synthetic Dataset . 35
4.2.4 CIFAR-10 Dataset . 36

4.3 Learning Rules . 36
4.4 Experimental Setup . 39

iii

5 Experimental Results 46
5.1 Introduction . 46
5.2 Checking Efficient Power Method . 46
5.3 XOR Datasets . 48
5.4 MNIST Datasets . 57
5.5 Synthetic Dataset . 64
5.6 CIFAR-10 Dataset . 68
5.7 Eigenvalues from Hessian of Loss . 72
5.8 Conclusion . 78

6 Conclusion 83

References 90

iv

Chapter 1

Introduction

Artificial Neural Networks (henceforth called NNs or networks) are mathematical structures
comprised of many small units or neurons, each of which perform a computation on the
sum of their input data and provide a single output value. These neurons are grouped into
layers with the output of one layer providing the input to the following layer, while neurons
in the same layer are not connected. Connections between neurons are given weightings,
which are known as the parameters of the model. The output of a neuron is multiplied by
such a parameter before being passed to the following neuron. It is the goal of training
to learn the parameter values that produce a target output value from the model given a
set of input values. In the supervised learning framework, which we study in this work by
looking at both classification and regression tasks with fully-connected feedforward network,
the input-output value pairs provide examples to the model of the desired mapping which
we want it to learn. The performance of the model is quantified by a loss function that
measures the discrepancy between the model’s output and the target output. NNs form
increasingly abstract representations of the input data within their hidden layers, with the
final layer using these composite representations to compute the output which minimizes the
loss function for the given task.

The loss function forms a manifold over the parameter space Θ of an NN by assigning a loss
value to each possible parametrization of the model θ ∈ Θ. This manifold is referred to as a
landscape with the aim of training being to find the minimum of this landscape. The fact
that a single parameter’s value can only be deemed good or bad (as measured by the loss
function) in the context of the rest of the model has resulted in the act of directly finding the
optimal values for all parameters simultaneously being a computationally intractable task.
As a result models are trained through iterative optimization methods, such as Gradient
Descent (GD). These methods, however, are prone to falling into sub-optimal local minima
within the loss landscape, take long to develop a competent model and are sensitive to factors
such as how the model parameters were initialized. The fact that a wealth of data is required
to train an NN is a further hindrance. In addition the data used to train the model must
be representative of the entire population of data from which it is sampled. In many cases
obtaining a fully representative sample of enough training examples is infeasible, resulting in

1

the model having to use learned patterns from the data that it has seen to try and generalize
to the unseen data. In essence the problem of developing a model that generalizes well is the
problem that NNs, as well as other machine learning techniques and models, aim to solve,
with the problem of fitting the training data being trivial given a large enough model formed
out of non-linear composite functions.

There have been many adaptations to GD that aim to speed up training or improve the
generalization of trained networks. A large majority of these adaptations aim to utilize ad-
ditional pre-determined values that bias the model parameters towards certain spaces within
the loss landscape. These methods are known as regularizers and the pre-determined values
are hyper-parameters that are set independently of the model parameters. Another common
approach is to utilize the shape of the loss landscape in the area of the model parameters
to take more precise updates at each time step. All of these adaptions have been success-
fully implemented in a variety of situations (for example L2 regularization [Krogh and Hertz
1992]), however, none have proven to work consistently. This fact, along with the fact that we
are still learning about the relationship between the loss landscape and how networks train,
means that the best method to train and regularize a model remains an open question within
the field of machine learning. We, thus, explore this relationship further by proposing and
investigating a novel regularization method defined by: θ∗ = argminθ(L(X, θ) + θT I(θ)θ).
Here L(X, θ) is any loss function dependent on the parameter values θ, X is the training
data set, I(θ) is the Fisher Information Matrix (which we provide background on in Section
2.2) and the second term in the argminθ is the novel regularizer. This method is aimed at
removing the independence assumption between neurons that is used with prior regulariza-
tion methods (such as L1 and L2 regularization) by accounting for the significance of each
parameter of the model as a whole when regularizing. We refer to this method as Metric reg-
ularization. In this work we refer to the “independence assumption” in relation to methods
which do not account for the interaction between parameters or treat parameters separately
when regularizing (as L1 and L2 regularization do). This is similar in a Bayesian sense to
assuming parameters are uncorrelated, indeed this is the case for deriving L1 and L2 regu-
larization as we show in Chapter 2. However, our definition of independence is broader as we
mean for this terminology to also incorporate methods which are agnostic to the correlation
between parameters.

To gain some initial intuition for this regularizer, and what it means to remove the indepen-
dence assumption, we plot the vector field from the Metric and L2 regularizers in Figures 1.1a
and 1.1b respectively for a two-parameter network shown in Figure 1.2. From these plots
we see that L2 forces the parameters towards the origin, and a parameter is always pushed
towards 0 regardless of the other parameter value. In contrast, Metric regularization follows
the shape of the landscape and does not always point towards the origin. In particular when
one parameter has a large value relative to the other, it is regularized very little. We then see
that, for this particular landscape, Metric regularization promotes sparsity in the networks
and L2 regularization promotes a low-norm solution. We believe this property of Metric

2

regularization to adapt to the relative values of the parameters to be valuable, as the impor-
tance of one parameter value can only be determined in the context of the rest of the network.

Figure 1.2: NN with a single path and 2 parameters

Due to prior work, such as the bias-variance trade-off [Geman et al. 1992] and Minimum De-
scription Length Principle [Rissanen 1978], there is a common notion that there is a trade-off
between NNs fitting the training data and generalizing to unseen data. This is also shown in
more recent works referencing Energy-Entropy competition where energy references the loss
of the model and entropy references the variance in its parameters [Zhang et al. 2018]. In
this work we explore this trade-off by adaptively increasing the regularization of parameters
that are more significant to the model fitting the training data. Through this we aim to
see whether increasing the regularization of these significant parameters improves the gen-
eralization of the model. In terms of the bias-variance trade-off we more severely restrict
the variance of the parameters which are most useful for decreasing the bias of the model.
Ultimately we find compelling results in favour of approaches contrary to Metric regulariza-
tion which adaptively choose to only regularize insignificant parameters. In so doing we also
reflect the absence of a trade-off between minimizing training loss and generalizing to unseen
data. Practically, this suggests a revision of our beliefs around overfitting and the causes of
generalization gaps in NNs.

This dissertation proceeds as follows. In Chapter 2 we provide information on the neces-
sary prior and related work for our research. This chapter is comprised of the following
sections. Section 2.2 discusses the necessary background on the Jeffreys prior and Objec-
tive Bayesian statistics, and introduces the Leibniz integral rule that we use multiple times
throughout this work. Section 2.3 then discusses the current state of the art regularization
methods used in machine learning, while Section 2.4 provides the necessary background on
Riemannian Geometry. We also briefly discuss recent work on the spectrum of the Hessian
matrix of the loss of NNs. A vital concept discussed in this section and introduced in Section
2.2 is the Fisher Information Matrix and its use as a metric tensor for Riemannian manifolds.

We then proceed with Chapter 3 where we present the theoretical results of this work, mo-
tivating the use of the Metric regularization method. We begin with two preliminary results
in Section 3.2 and Section 3.3 where we show that the parameters of an NN are correlated
and the effect of using the Cramér-Rao bound on a Multivariate Gaussian distribution. In
Sections 3.5, 3.6 and 3.7 we then present the three parts of the larger proof which reflects
that the use of a regularizer derived from the Multivariate Gaussian distribution (Section
3.5) results in model parameters equivalent to the minimum mean squared error parameters

3

(a) Metric Regularizer Vector Plot

(b) L2 Regularizer Vector Plot

Figure 1.1: Vector plots showing the different regularization steps from Metric regularization
in Figure 1.1a and L2 regularization in Figure 1.1b. Vector plots are shown from two angle,
the front (left images) and top (right images) view. Each point on the θ1 and θ2 axis is
parametrization for the network in Figure 1.2 and map to a corresponding loss value (we
generated data from an identical “teacher” network). We see that L2 regularization always
points towards the origin, while Metric regularization follows the slope of the data (note at
the corners of the plot the vectors run parallel to one of the parameters which has little effect
on the network’s function).

4

for linear regression models (Section 3.6) as well as the same parameters found from Bayesian
inference (Section 3.7). We conclude this chapter with two related sections, Section 3.8 and
3.9, where we present the theory behind an algorithm for finding the spectrum of the Hessian
of an NN in a memory efficient manner.

In Chapter 4 we then describe our experimental methodology used to evaluate the Metric
regularizer. In Section 4.2 we present the five datasets used, namely the XOR, XORD,
MNIST, a synthetic dataset and the CIFAR-10 datasets. In Section 4.3 we present the var-
ious learning rules used in the experiments. Naturally these learning rules include vanilla
Stochastic Gradient Descent (SGD) as well as the learning rule with the Metric regularizer,
however, we also include various baseline regularizers and other regularizers used to compare
with. The chapter concludes with Section 4.4 where we describe the setup of the experiments
and the considerations around this setup.

Throughout this work we specify the notation used for an equation along with the given
equation. We do adhere to some notational standards. Bold font is used to denote a vector
(x) with 0 being a vector of 0’s. Capital letters are used to denote random variables (X) and
capital letters with indices denote elements of matrix variables (for example Xij shows the i-
th row and j-th column of the matrix X).

∑
is used to denote the summation operator, while

P (X = x) shows the probability of random variable X taking the value x. We abbreviate
this to P (X) to lighten notation. We utilize log() to denote the natural logarithm, while all
other log bases are explicitly indicated, for example log10(). Finally I(θ) denotes the Fisher
Information Matrix (with the dependence on θ) and I denotes the identity matrix. N is the
number of parameters in our model and P is the number of data points in our training data
set. We also use hats on variables to denote that they are estimates of variables for example ŷ.

As a notational and practical standard of this work we apply a learning rate (α) to the
derivative of the loss and a regularization rate (λ) to the derivative of the regularization
term. We treat these two components individually. In some other works the learning rate
is applied to both the loss and regularization terms. We separate these two components for
readability and to make hyper-parameter tuning simpler. If the latter version is preferred
then in our work the notation can be seen as λ = λ′/α where λ′ is the regularization rate
and λ is the ratio of the regularization to learning rates.

There are five primary contributions of this work

• We create a set of new regularizers which adapt the regularization of a parameter to
how important the parameter is to fitting training data.

• We present theoretical analysis on why the new regularizers are necessary and in par-
ticular on the benefits of Metric regularization.

• We make all of our novel regularizers efficient, which we define as the regularizer being

5

of the same time and memory complexity as GD. Using the same technique we use
to make our regularizers efficient we also create a novel algorithm for finding the top
Eigenvalues of the Hessian of the loss of an NN.

• We show insight into the relationship between NNs fitting the training data and gen-
eralizing to unseen data. We find that there is not a trade-off between training and
test data performance.

• We begin to bridge the gap between the small and large parameter initialization regimes
[Geiger et al. 2020] and show the implicit regularization effect of using small initial
parameters.

6

Chapter 2

Background and Related Work

2.1 Introduction

In this chapter we provide the background necessary for this research. We begin with Section
2.2 in which we describe Objective Bayesian statistics and in particular the Jeffreys prior
which is useful for the theoretical results in Chapter 3. In particular we use the Jeffreys
prior defined in this section to relate the Maximum A Posteriori (MAP) parameters to the
Bayesian parameters for an NN. This is used to motivate the use of Metric regularization.
This is then followed by Section 2.3 in which we discuss some of the current regularization
methods employed when training neural networks (NNs). We focus primarily on regularizers
which are derived from Bayesian priors as these are the most similar to the Metric regular-
ization methods. In particular we compare metric regularization against L2 regularization
throughout this work and use it in contrast to our new regularizers to interpret the per-
formance of models on unseen data. Through this we gain insight into the factors causing
the generalization gap between training and test data performance. We additionally, briefly,
discuss Dropout which is a particularly popular regularization method that is Bayesian in
nature, but not explicitly derived from a prior. Finally in Section 2.4 we provide a brief
background on the Riemannian Geometry perspective of the loss landscape of an NN. In
particular we discuss the Fisher Information Matrix and its use as a metric tensor. The
metric tensor is the main component of the metric regularizer and so we provide a lot of
detail on its utility and use in Riemannian geometry. Our ability to generalize regularization
to correlated parameter spaces is due to the relationship between the Fisher Information
Matrix and covariance matrix which we also show in this section.

2.2 Objective Bayesian Statistics and the Jeffreys Prior

In this section we look at Objective Bayesian statistics, a sub-field of Bayesian statistics
which focuses on imparting as little information on the parameter inference as possible.
In other words, it aims to ensure that the data has the most influence possible over the
inference. This is useful if we know little about the parameter values prior to observing any

7

data, which is likely the case for the parameters of NNs. Naturally we begin by defining
Bayes’ rule [Bayes 1763] which provides a formula for including our prior knowledge into
the process of modelling data. Through this formula we may determine the probability of
a certain parameter value, given a set of data and our own prior beliefs on the parameter’s
value. We then move on to Objective Bayesian statistics. Bayes’ rule is defined as:

P (θ|X) =
P (X|θ)P (θ)∫
P (X|θ)P (θ)dθ

=
1

Z∗
P (X|θ)P (θ) (2.1)

P (X|θ) is known as the likelihood distribution and reflects the probability of a batch of data
X occurring under a probability distribution parametrized by θ. In general we have to make
an assumption (based on the data) as to the format of the likelihood distribution P (X|θ).
For example if we know that the data only takes on the values {0, 1} then we may choose
to model this data with a Bernoulli distribution, which models data with only two possible
discrete values. P (θ) in Equation 2.1 is known as the prior distribution over the parameters
of the likelihood distribution. It is defined over Θ, the parameter space of the distribution,
and provides a probability to each θ ∈ Θ. The support of the prior distribution is determined
by the choice of likelihood distribution. Finally, the denominator of Equation 2.1 is known
as the evidence and reflects the probability of the data X under the entire parameter space
Θ. In other words, the probability of X independent of the choice of the value assigned to θ.
The denominator ensures the resultant distribution formed in Equation 2.1 integrates to 1
and is a proper distribution. The denominator is also denoted by Z∗ a normalizing constant.
The use of the superscript star on Z∗ is to reflect that it is the normalizing constant resulting
from the likelihood and prior distribution. This is to distinguish from a normalizing constant
for the likelihood distribution only, Z, which is used later in this work. Bayes’ rule results
in the posterior distribution P (θ|X) which provides the probability of a model parametriza-
tion given a fixed set of data. Similar to the prior distribution, the posterior distribution
is defined over the parameter space of the model and can be seen as the prior distribution
having been updated after observing the values of the data set.

The goal of solving parameter inference problems is to determine the value for θ which
maximizes this posterior probability given a fixed set of data. Formally we aim to find,
argmaxθ∈Θ P (θ|X). For this work we are concerned with how we set the prior distribution
and its effects on the posterior distribution. One of the most common distributions to use for
the prior is the uniform distribution P (θ) ∝ 1 in which a constant value is provided for all
θ ∈ Θ. This results in P (θ|X) ∝ P (X|θ) and so the value which maximizes P (θ|X) is the one
which maximizes the probability of the data set under the likelihood distribution P (X|θ).
This is known as Maximum Likelihood (ML) approximation. In many cases, however, it is
advisable to use a non-uniform prior distribution. In this case the prior distribution changes
the resultant posterior distribution and we say it “informed” the posterior distribution. We
show two examples of such priors in Section 2.3 below. When we use a non-uniform prior
and find the parameter value which maximizes the posterior probability distribution we are
using Maximum A Posteriori (MAP) approximation.

8

A difficulty associated with setting the prior for use with Bayes’ rule is that it is sensitive to
the choice of model parameters. Thus, a prior which is uninformative in one parametrization
may be very informative in another, after a change of variables. This means that, given the
same data and assumption on the form of the likelihood distribution, two different posterior
distributions may occur depending on the parametrization used. This breaks consistency, a
frequentist notion that an inference should converge to a consistent answer regardless of the
parametrization. This lead to the creation of the Jeffreys prior [Jeffreys 1946]. The Jeffreys
prior is defined as:

p(θ) ∝
√

det I(θ) (2.2)

where I(θ) is the Fisher Information matrix [Fisher 1922] defined (where the expectation is
over the dataset) as:

[I(θ)]ij = EX

[(
∂

∂θi
logP (X|θ)

)(
∂

∂θj
logP (X|θ)

)
|θ
]

(2.3)

Fisher Information Matrix can be viewed as the covariance of gradients from the log-
likelihood of a probability distribution. Intuitively it reflects how much influence a parameter
has over the other parameters and the probability distribution as a whole. The determinant
of the Fisher Information Matrix then shows how sharply the probability distribution changes
in all directions. In other words, it shows the total variance, away from 0, in the gradients of
the parameter values of the log-likelihood. The Jeffreys prior then adjusts its prior probabil-
ity based on this variance in the gradients. Lower variance reflects that a parameter is less
important to the overall distribution, and so we are less confident that it has been accurately
restricted by the data.

The first important aspect of the Jeffreys prior is the fact that it is invariant under a change
of variables (a reparametrization of a statistical model) and provides the same relative prob-
ability density to a region of parameter space regardless of the original parametrization of
a model. In other words, whether the modelling process is conducted in θ space directly or
in some other parameter space φ = f(θ) first and then transformed to θ space the resultant
prior density will be the same. The same cannot be said for other prior densities in gen-
eral. We demonstrate this property in the one-parameter case, with θ ∈ R and φ ∈ R. Let
p(θ) ∝

√
I(θ) where the determinant is dropped in the one dimensional case. Additionally

let p(φ) ∝
√
I(φ). Then using the change of variables theorem [Kaplan 1952]:

p(θ) = p(φ)
∣∣dφ
dθ

∣∣ ∝√I(φ)
∣∣dφ
dθ

∣∣ =

√
I(φ)

(
dφ
dθ

)2
=

√
E

[(
d logP (X|φ)

dφ

)2
] (

dφ
dθ

)2

=

√
E

[(
d logP (X|φ)

dφ
dφ
dθ

)2
]

=

√
E

[(
d logP (X|θ)

dθ

)2
]

=
√
I(θ)

The invariance property of the Jeffreys prior is due to the determinant of the Fisher Infor-
mation Matrix being invariant under a change of variables [Ly et al. 2017]. This is the case

9

as the Fisher Information Matrix is the metric tensor of a statistical manifold, and since
volume is an invariant property of a manifold, the determinant of the metric tensor is in-
variant. The Fisher Information and Riemannian manifolds are discussed further in Section
2.4. The primary utility of the Jeffreys prior, however, is in its use as an uninformative
(objective) prior as it aims to impart as little information on the posterior distribution as
possible [Jaynes 1968 2003]. This is particularly clear in the case of a Gaussian distribution
with fixed variance (σ2). The Jeffreys prior for the mean in this case is P (µ) ∝ 1

σ
, a uniform

distribution. Thus, after any reparametrization of the mean of a Gaussian, the Jeffreys prior
is equivalent to a uniform distribution in the original µ space. Thus, the Jeffreys prior is
always equivalent to a uniform distribution in some parameter space, but not necessarily
the parameter space which we are working in. In the case of an NN, the Jeffreys prior is
uniform over the loss landscape (if we treat the output of the network as a random variable)
but will not be uniform in Θ-space. In general the Jeffreys prior aims to provide less prior
density to high variance areas of the parameter space. This results in a prior which places
less density over a portion of the parameter space when a large set of parametrizations are
likely. Likewise, portions of the parameter space where the parametrization is certain, or few
parametrizations are equally likely to produce the data, obtain a high prior density. Thus,
the Jeffreys prior matches the uncertainty of a parametrization and as a result informs the
posterior distribution as little as possible.

Finally, it is helpful to note the relationship between the Fisher Information Matrix and
Hessian of the negative log-likelihood of a probability distribution log(P (X|θ)) (Section 2.3
shows that the negative log-likelihood of a Gaussian distribution results in the quadratic loss
function). At the point of the maximum likelihood estimate the expected Fisher Information
Matrix and the expected Hessian are equal:

EX[H[− logP (X|θ)]] = EX[− ∂
∂θi

∂
∂θj

logP (X|θ)] = EX

[
− ∂
∂θi

(
∂
∂θj

P (X|θ)

P (X|θ)

)]
= EX

[
−

(∂
∂θi

∂
∂θj

P (X|θ))P (X|θ)

P (X|θ)2 +
∂
∂θi

P (X|θ) ∂
∂θj

P (X|θ)

P (X|θ)2

]
= −EX

[
∂
∂θi

∂
∂θj

P (X|θ)

P (X|θ)

]
+EX

[
∂
∂θi

P (X|θ)
P (X|θ)

∂
∂θj

P (X|θ)

P (X|θ)

]
= EX

[(
∂
∂θi

logP (X|θ)
)(

∂
∂θj

logP (X|θ)
)]

= [I(θ)]ij for i, j ∈ {1, ..., N}. The equality above

relied on the fact that at the maximum likelihood estimator the term EX

[
∂
∂θi

∂
∂θj

P (X|θ)

P (X|θ)

]
= 0.

This can be shown using the special case of the Leibniz integral rule where the limits of the
integral are constant (which may be sufficiently large to be considered infinite):∫ ∞

−∞

∂

∂θ
f(x, θ)dx =

∂

∂θ

∫ ∞
−∞

f(x, θ)dx (2.4)

Using Equation 2.4 we can change the order of integration and differentiation to obtain:

EX

[
∂
∂θi

∂
∂θj

P (X|θ)

P (X|θ)

]
=
∫∞
−∞

∂
∂θi

∂
∂θj

P (X|θ)

P (X|θ) P (X|θ)dx =
∫∞
−∞

∂
∂θi

∂
∂θj
P (X|θ)dx

= ∂
∂θi

∂
∂θj

∫∞
−∞ P (X|θ)dx = ∂

∂θi

∂
∂θj

1 = 0.

As a result the Jeffreys prior can also be written as p(θ) ∝
√

detH(θ) at the MLE estimate.

10

2.3 Gradient Descent and Regularization Methods

In this section we provide a brief background into related regularization methods to our
proposed method. We first reflect the derivation of L1 and L2 regularization from priors
on a probability distribution. These are the two most closely related regularizers to our
own and their use reflects that the MAP parametrization for a model is found. The MAP
parameters are those with the maximum posterior probability shown in Equation 2.1. They
are the parameters that best describe the given data while accommodating our prior beliefs,
which we control now through the use of regularizers. We then conclude this section with a
brief look at the dropout regularization method which is probabilistic in nature, but is not
derived as an explicit prior on a model. We begin, however, with the definition of Gradient
Descent.

Let ŷi = f(xi, θ) be a function defined by an NN where xi is the input to the network, ŷi is the
output of the network (ŷi = EX[y|x]) and θ is a vector of model parameters. Then let L repre-
sent a loss function, one example being the quadratic loss function L = 1

P

∑P
i=1(yi−f(xi, θ))

2.
Here P is the number of data points in the training data set. Then the aim of training an
NN is to find the parametrization θ ∈ Θ which minimizes this loss function. This is achieved
by repeatedly moving the parameter values in the negative direction to the gradient of the
loss with respect to the parameters. Thus, we update the parameters with the learning rule
θi(t+1) = θi(t) − α ∂

∂θi(t)
L where the subscript i reflects which parameter is being updated in

the parameter vector. The subscript in brackets (t) reflects the time step of the update and
α is a pre-defined learning rate. We can then add a regularization term to the learning rule
aimed to restrict the parametrization to certain regions of the parameter space. The learning
rule takes the form θi(t+1) = θi(t) − α ∂

∂θi
(L+R). The aim is then for the model to find the θ

value corresponding to the minimum in the landscape defined by (L+R), the loss function
and regularization term.

In the following we derive the L1 and L2 regularizers from their corresponding probability
distributions applied to Bayes’ rule. For both derivations we use a one-dimensional Gaussian
distribution for the likelihood distribution P (X|θ). This corresponds to a regression problem
using the quadratic loss. In traditional problems solved by NNs only the position parameters
(θ) of this likelihood distribution are learned. As a result it is necessary to assume the scale
parameter (variance) is constant. We also denote the prior distribution over θ as P (θ|µ)
where µ is a parameter of the prior distribution that we set (a hyper-parameter). L1 and
L2 regularization correspond to the use of µ = 0. Bayes’ rule applied to these distributions
is as follows:

P (θ|X, µ) =
P (X|θ)P (θ|µ)∫
P (X|θ)P (θ|µ)dθ

=
1

Z∗
P (X|θ)P (θ|µ) (2.5)

For L1 regularization a Laplace distribution is used for the prior where b is its corresponding
scale parameter, which is also assumed to be constant. We begin with this derivation, where
the Laplace distribution is shown in Equation 2.6. This is then followed by L2 regularization

11

with a Gaussian prior distribution where σ̂2 is the constant scale parameter. The independent
(isotropic) Gaussian distribution is shown in Equation 2.7. In both cases an independence
assumption in the values of the parameters is used. It is also assumed that each data point
x ∈ X is independent and identically distributed (i.i.d).

L1 Regularization Derivation

Let:

P (X|θ) =
1

Z
exp

(
−

P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

)

P (θ|µ) =

N∏
j=1

1

2b
exp

(
−|θj − µj |

b

)
=

1

2b
exp

− N∑
j=1

|θj − µj |
b

 (2.6)

Where: µ is a hyper-parameter we set and enforces the constraint on θ

We have also assumed the parameters are independent for the prior and sum over the exponent

to get the joint density over the parameters.

This results in a posterior distribution (using Equation 2.1):

P (θ|X, µ) =
1

2bZ
exp

− P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

−
N∑
j=1

|θj − µj |
b


Taking the negative of the natural log of this posterior distribution we obtain:

(L+R) = − logP (θ|X, µ) =

P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

+

N∑
j=1

|θj − µj |
b

+ log(2bZ)

Since log(2bZ) is independent of the θ value it does not change the stable point of θ

and so we can drop it from the loss function. We also set our hyper-parameter µj = 0 ∀ j ∈ {1, 2, ...N}.

This gives us the loss function:

(L+R) =
1

2σ2
i

P∑
i=1

(yi − f(xi, θ))
2 +

N∑
j=1

1

b
|θj |

Since we used the negative log we aim to minimize this function with respect to the parameters.

The log is a monotonic function and so does not change the stable points of the parameter values.

We, thus, take the derivative with respect to θ to find its stable points.

∂(L+R)

∂θk
=

1

2σ2
i

∂

∂θk

P∑
i=1

(yi − f(xi, θ))
2 +

1

b

∂

∂θk

N∑
j=1

|θ|

∂(L+R)

∂θk
= − 1

σ2
i

P∑
i=1

(yi − f(xi, θ))(f
′(xi, θ)) +

1

b

In practice a constant is applied to the regularizer to determine the degree of regularization.

We denote this as λ. In addition we now include the learning rate α.

12

We then have the parameter update equation:

θi(t+1) = θi(t) −
∂(L+R)

∂θi
= θi(t) + α′

P∑
i=1

(yi − f(xi, θ))(f
′(xi, θ))− λ′

Where α′ =
α

σ2
i

and λ′ =
λ

b
since σ2

i and b are both assumed constants with respect to θ.

L2 Regularization Derivation

Let:

P (X|θ) =
1

Z
exp

(
−

P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

)

P (θ|µ) =

N∏
j=1

1

Ẑ
exp

(
− (θj − µj)2

2σ̂2

)
=

1

Ẑ
exp

− N∑
j=1

(θj − µj)2

2σ̂2

 (2.7)

Where: µ is a hyper-parameter we set and enforces the constraint on θ

We have also assumed the parameters are independent for the prior and sum over the exponent

to get the joint density over the parameters.

This results in a posterior distribution (using Equation 2.1):

P (θ|X, µ) =
1

ZẐ
exp

− P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

−
N∑
j=1

(θj − µj)2

2σ̂2


Taking the negative of the natural log of this posterior distribution we obtain:

(L+R) = − logP (θ|X, µ) =

P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

+

N∑
j=1

(θj − µj)2

2σ̂2
+ log(ZẐ)

Since log(ZẐ) is independent of the θ value it does not change the stable point of θ

and so we can drop it from the loss function. We also set our hyper-parameter µj = 0 ∀ j ∈ {1, 2, ..., N}.

This gives us the loss function:

(L+R) =
1

2σ2
i

P∑
i=1

(yi − f(xi, θ))
2 +

N∑
j=1

1

2σ̂2
(θj)

2

Since we used the negative log we aim to minimize this function with respect to the parameters.

The log is a monotonic function and so does not change the stable points of the parameter values.

We, thus, take the derivative with respect to θ to find its stable points.

∂(L+R)

∂θk
=

1

2σ2
i

∂

∂θk

P∑
i=1

(yi − f(xi, θ))
2 +

1

2σ̂2

∂

∂θk

N∑
j=1

(θj)
2

∂(L+R)

∂θk
= − 1

σ2
i

P∑
i=1

(yi − f(xi, θ))(f
′(xi, θ)) +

1

σ̂2
(θk)

In practice a constant is applied to the regularizer to determine the degree of regularization.

13

We denote this as λ. In addition we now include the learning rate α.

We then have the parameter update equation:

θi(t+1) = θi(t) −
∂(L+R)

∂θi
= θi(t) + α′

P∑
i=1

(yi − f(xi, θ))(f
′(xi, θ))− λ′(θk)

Where α′ =
α

σ2
i

and λ′ =
λ

σ̂2
since σ2

i and σ̂2 are both assumed constants with respect to θ.

Finally we look at the last regularization method, Dropout. Dropout is different from the
two regularizers above as it is not derived as a prior on the parameter distribution. Dropout
works by stochastically removing a certain portion of the network at each training time step.
For example if β = 0.5 is the dropout rate then half of the model parameters will be set to 0
(effectively removed) for a time step of training. At any given point in time during training
the capacity of the network is β of the real capacity. For the parameters that remain in
the model, they are updated with any of the existing optimization algorithms. Randomly
removing parameters while training with Dropout prevents parameters from adapting sig-
nificantly to the state of the rest of the network and being valuable only within the context
of the rest of the network. As a result every parameter of the network learns valuable in-
formation from the training data. Then when moving from training to test data, the model
parameters are multiplied by β and the entire network is then used for inference on test data.

This process is often discussed in conjunction with ensemble models, where multiple versions
of the same network are trained and then the average of the models’ predictions is then taken
for inference. Baldi and Sadowski [2013] characterize dropout as simultaneously training the
ensemble of all sub-networks. Dropout’s strength, however, is its speed relative to ensemble
models as it does not require entirely different models to be learned, and parameter updates
at one time step affect future sub-networks. The comparison also highlights a drawback
of Dropout. It effectively reduces the capacity of the network and results in significant
redundancy between parameters. This is because, when a parameter is dropped from the
network, another parameter begins to learn the information the first parameter had already
learned. Then when these model parameters are multiplied by β and both included in making
inferences it is functionally the same as using the parameters of two separate networks.
In addition, while Dropout may be faster than ensembles, it is still slower to train than
vanilla GD. Dropout, similar to ensemble models, does provide robust parametrizations for
networks and is used extensively in practice to achieve good results. While not perfect
Dropout provides a practical method of obtaining ensemble-like parametrizations without
the computational costs of training numerous models.

2.4 Riemannian Geometry

Given a real, smooth manifold M , at each point p ∈M we define a vector space TpM called
the tangent space of M at p. The tangent space is a flat plane consisting of all tangent

14

Figure 2.1: Example of the Tangent Space (orange shades) at a point on a 2-dimensional
manifold (green shades) (best viewed in colour)

vectors to the manifold at the point p. The dimension of the tangent space at every point of
a connected manifold is the same as that of the manifold itself [Carmo 1992]. An example
of the tangent space at a point on a 2-dimensional manifold embedded in 3-dimensional
space is shown in Figure 2.1. A Riemannian metric g assigns to each p ∈ M a positive-
definite inner product over the tangent space gp : TpM × TpM → R. The metric, thus,
assigns a positive value to every non-zero tangent vector [Dodson and Poston 2013]. A
real, smooth manifold M with a Riemannian metric g is a Riemannian manifold denoted
as (M, g). The most familiar example of a Riemannian manifold is Euclidean space. Let
y1, ..., yn denote the Cartesian coordinates on Rn. Then the metric tensor is gp = I ∈ Rn×n

+

and the inner-product is the familiar definition of the dot-product for Euclidean geometry√
gp(u,v) =

√
uT Iv =

√∑
i uivi. For R2 this results in the traditional Pythagorean theo-

rem. Thus, the metric generalizes the calculation of distance to non-Euclidean spaces and
to arbitrary dimensions. The identity matrix is also called the canonical Euclidean metric.

This inner product can be used to define a norm for tangent vectors | · |p : TpM → R by
|v|p =

√
gp(v,v), as well as other geometric notions such as angles between vectors and the

local volume of the manifold [Carmo 1992; Amari 2016]. The local volume of a manifold
was used in Section 2.2 as the determinant of the metric tensor in the Jeffreys prior. For
example we can look at the UV coordinate system where UV ⊆ R2. Let a = a1

∂
∂u

+a2
∂
∂v

and
b = b1

∂
∂u

+b2
∂
∂v

where ∂
∂u
, ∂
∂v

are the basis vectors of some tangent space and a1, a2, b1, b2 ∈ R.
Then, using the bilinearity of the dot product :

a · b = a1b1
∂
∂u
· ∂
∂u

+ a1b2
∂
∂u
· ∂
∂v

+ a2b1
∂
∂u
· ∂
∂v

+ a2b2
∂
∂v
· ∂
∂v

=
[
a1 a2

] [∂
∂u
· ∂
∂u

∂
∂u
· ∂
∂v

∂
∂u
· ∂
∂v

∂
∂v
· ∂
∂v

] [
b1

b2

]
.

In this case the metric tensor is g =

[
∂
∂u
· ∂
∂u

∂
∂u
· ∂
∂v

∂
∂u
· ∂
∂v

∂
∂v
· ∂
∂v

]
, a ·b = g(a,b), the norm of a tangent

15

vector is |a| =
√
g(a, a) and the angle θ between two tangent vectors is cos(θ) = g(a,b)

|a||b| .

When
[
a1 a2

]
=
[
b1 b2

]
=
[
du dv

]
then the inner-product describes the instantaneous

change along the tangent space: ds2 =
[
du dv

] [∂
∂u
· ∂
∂u

∂
∂u
· ∂
∂v

∂
∂u
· ∂
∂v

∂
∂v
· ∂
∂v

] [
du
dv

]
. We also note that

by the chain rule

[
du

dv

]
=

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

] [
dx

dy

]
where dx and dy are changes in the XY coordinate

system. Thus:

ds2 =
[
du dv

] [∂
∂u
· ∂
∂u

∂
∂u
· ∂
∂v

∂
∂u
· ∂
∂v

∂
∂v
· ∂
∂v

] [
du
dv

]
=
[
dx dy

] [∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]T [
∂
∂u
· ∂
∂u

∂
∂u
· ∂
∂v

∂
∂u
· ∂
∂v

∂
∂v
· ∂
∂v

][∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

] [
dx
dy

]
=
[
dx dy

] [∂
∂x
· ∂
∂x

∂
∂x
· ∂
∂y

∂
∂x
· ∂
∂y

∂
∂y
· ∂
∂y

] [
dx

dy

]
= (ds′)2. This reflects two important points. Firstly that

the distance calculation with the metric tensor is invariant under a change of coordinate sys-
tems. Secondly that the metric tensor transforms using the Jacobian matrix Jf , the matrix of
all first-order partial derivatives of a function f : XY → UV that maps between coordinate
spaces. Thus g′ = Jf

TgJf where g′ is the metric tensor in the XY coordinate system and
is known as the pullback metric of g (for UV space) from f . The invariance of the metric
tensor to a change of coordinates allows us to compute the inner product of tangent vectors
in a manner independent of the parametric description of the manifold and so we can define
a notion of distance in the UV space but calculate the distance in the XY coordinate system.

We have described the relationship between a manifold, its metric tensor and tangent bundle
(set of all tangent spaces on the manifold), as well as how to map between different coor-
dinate spaces. The final step is to describe how to obtain a metric tensor to begin with.
Regions of a manifold are described using charts, where one or more charts are combined to
form an atlas [Jost 2008; Gauld 1974]. A chart for a Riemannian manifold (M, g) is a diffeo-
morphism ϕ from an open subset U ⊂M to an open subset of a Euclidean space. The chart
is denoted as the ordered pair (U,ϕ). Since charts map onto Euclidean space we can then use
the canonical Euclidean metric and also transform the points on the manifold to points in
this Euclidean space where we can calculate distance. However if we wish to still work in the
original space with the defined notion of distance in Euclidean space, we may then pullback
the metric from the Euclidean space using the locally defined chart to obtain a metric tensor
for the tangent space of the manifold. It is important to note that the pullback metric is not
necessarily positive definite and so the manifold described by the pullback metric may not
be Riemannian, but rather pseudo-Riemannian [Jost 2008]. Pseudo-Riemannian manifolds
are a generalization of Riemannian manifolds where the positive definite constraint on the
metric tensor is relaxed such that the metric tensor is only required to be everywhere non-
degenerate. The non-degenerate property means that there is no non-zero X ∈ TpM such
that gp(X,Y) = 0 for all Y ∈ TpM . This is in contrast to the positive-definite constraint
where for a non-zero X ∈ TpM then g(X,Y) 6= 0 for all Y ∈ TpM .

16

Specifically for the case of NNs, we note that the parameter space of a probabilistic model
forms a statistical manifold and by extension a Riemannian manifold [Rao 1945]. The met-
ric tensor for statistical manifolds is the Fisher Information Matrix [Skovgaard 1984; Amari
2016] shown earlier in Equation 2.3. If we interpret the loss function as a coordinate chart
from the N -dimensional parameter space onto the 1-dimensional Euclidean space then the
Fisher Information Matrix is viewed as the pullback metric of the canonical Euclidean metric
from the expected value of the loss. To show this we make use of the fact that since the loss
is 1-dimensional then L = θTJL which is the usual notion of the differential of L. Hence:
EX[L2] = EX[θTJLJ

T
L θ] = θTEX[JLJ

T
L]θ = θT I(θ)θ

The equality of the Fisher Information Matrix and Hessian matrix is also significant as the
Hessian is used in the area of a critical point on a Riemannian manifold to obtain the prin-
cipal curvatures [Porteous 2001], and as a result the shape operator at that point [Spivak
1970]. In the case of a Riemannian manifold the shape operator is defined as the deter-
minant of the Hessian matrix det(H(θ)) [Koenderink and Van Doorn 1992]. The principal
curvatures are defined as the eigenvectors of the Hessian matrix and decompose the manifold
into orthogonal dimensions of curvature, with the first eigenvector reflecting the dimension
of most curvature. The eigenvalues from the eigen-decomposition of the Hessian is known
as the spectrum of the Hessian and the determinant of the Hessian can be calculated from
the product of its eigenvalues. The Fisher Information Matrix (and by extension Hessian)
is also significant as it upper-bounds the inverse covariance matrix of the parameters of a
statistical model through the Cramér-Rao Lower bound which states that Σ−1 6 I(θ). As
a result larger elements of the Fisher Information Matrix reflect that there is a lower degree
of variance in the model parameters and more certainty that those parameters are necessary
for fitting the training data. As stated in Chapter 1 we believe this to be useful information
for creating a regularizer by using the Riemannian distance to restrict the parameters of an
NN. In light of this the Metric regularizer can be viewed as regularizing the low variance
parameters of an NN more strictly, while the more irrelevant and high variance parameters
are regularized less.

The Hessian matrix also provides the link between Riemannian Geometry and previous work
with NNs as there has been a significant amount of work exploring the Hessian of the loss
function in recent years. Most of these works have centered around the eigen-decomposition
of the Hessian and the impact of flat regions of the landscape on both first and second-order
training methods. Examples include the observation that the spectrum of the Hessian con-
tains a few, large Eigenvalues but the large majority of Eigenvalues are near zero [Sagun et
al. 2017]. It was also observed that various changes to the hyper-parameters during training
change the final parametrization learned by the model, but that these minima tended to
lie along the same connected basin in the loss landscape. This was extended by Gur-Ari
et al. [2018] which empirically studied the overlap of the direction followed by GD and the

17

directions corresponding to the large (top) Eigenvalues of the Hessian. It was found that
after a brief warm-up period GD tended to follow these top directions nearly exclusively.
There has also been work that aims to utilize the second-order information to create new
practical algorithms that are more suited to optimizing non-convex manifolds. In Dauphin
et al. [2014] the gradients of normal GD update steps are multiplied by the inverse of the
absolute values of the Hessian matrix as well as the top Lanczos vectors of the Hessian. This
creates an update step that is well adapted to escape saddle points within the loss landscape
but is still able to effectively optimize the manifold.

A common consideration of all previous work regarding the Hessian is that the loss landscape
contains flat regions along which the parameters of the network can be changed without af-
fecting the network’s loss. This results in the Hessian matrix being singular. These flat
regions are a result of covariant parameters that may be changed in a coordinated manner
without changing the function approximation of the network. Such covariant parameters
naturally occur with the addition of hidden layers to the model, resulting in parameters
along the same path through the network becoming correlated. In addition the increase in
width of the layers results in neurons of the same layer learning similar mappings and becom-
ing interchangeable. While flat regions of the loss landscape reflect that the training loss is
not affected by a change in parameter values along the flat path, different parametrizations
may have significantly different performance on unseen data. This is because many network
parametrizations can perfectly fit the seen data (data sampled from the data subspace) but
perform different function approximations for unseen data (over the data null-space). The
effective handling of the data null space is the point of regularization as it constrains the
function approximation for unseen data. By creating a bias for the model parameters towards
0 we constrain the model to simpler function approximations that interpolate smoothly be-
tween the seen data points. The necessity of regularization for data-constrained problems
can be seen from Bayes’ rule where a prior is needed for data-constrained Bayesian inference.
As the quantity of data increases (P →∞) the MAP solution converges to the ML solution,
reflecting the decreasing need for the prior/regularization.

18

Chapter 3

Theoretical Analysis

3.1 Introduction

In this chapter we present the theoretical analysis of the proposed Metric regularization
method, defined by the learning rule: θ(t+1) ← θ(t) − ∇θL(X, θ(t)) − θT(t)I(θ(t)). The third

term on the right side, θT(t)I(θ(t)), is the regularization part of the learning rule. This term is

the first derivative of the Riemannian distance of the model parameters: ∇θθ
T
(t)I(θ(t))θ(t). As

shown in Section 2.4, the Riemannian distance allows us to define distance in the loss-space
while being able to work in parameter space. By taking the derivative of the Riemannian
distance we are able to find which parameters have the most impact on the loss of the
model. Two primary benefits of using the Riemannian distance is that it incorporates the
loss and activation functions used through the chain-rule, and so it can be used with any
such functions as long as they are differentiable (a condition already required by gradient
descent). Secondly, the impact of a parameter is determined by its interaction with the
other parameters of the model. This is due to the dot-product of the parameters and Fisher
Information Matrix: θT(t)I(θ(t)). By accounting for the interactions between parameters we
aim to generalize regularization to correlated parameter spaces.

In particular there are two related effects being observed in the Fisher Information Matrix.
The diagonal reflects the sensitivity of a parameter in isolation, while the off-diagonal ele-
ments reflect the sensitivity of a parameters due to its interaction with another parameter.
Naturally the sensitivity of a parameter in isolation will be related to its sensitivity due to
interactions. Parameters which are sensitive in isolation are likely to be sensitive when inter-
acting with other parameters, however, it is possible for the diagonal element for a parameter
to be insensitive (small) while its off-diagonal elements are sensitive (large). This will be
most likely when parameters have very different scales. Hence, it is particularly important
to account for the correlation between parameters when we the parameters are large. As we
will see in Chapter 5, this intuition fore-shadows our empirical results.

19

We begin in Section 3.2 where we show that the parameters of separate layers in an NN are
correlated, motivating the use of regularizers that account for this fact. In Section 3.3 we
then derive a useful bound showing the effect using the Cramér-Rao Lower Bound has on the
shape of a Multivariate Gaussian distribution. Section 3.3 also highlights the relationship
between the Fisher Information Matrix and the covariance matrix of the Multivariate Gaus-
sian distribution and shows how the Fisher Information Matrix can reflect the correlation
between parameters. Section 3.4 then follows with the derivations of the Fisher Information
Matrix for the relevant probability distributions that are used in the following sections. In
Section 3.5 we then derive the regularizer from a Bayesian prior in the same manner as the
derivations of L1 and L2 regularization in Section 2.3. Section 3.6 then reflects that the
Bayesian parameter approximation from the Multivariate Gaussian prior with the Gaussian
likelihood distribution is equivalent to the Minimum Mean Squared Estimation (MMSE) for
the parameters of a linear regression model. The MMSE parameters for linear regression
result from the MAP inference with an isotropic (which implies independence) Gaussian
prior [Advani et al. 2013; Advani and Ganguli 2016]. We show an equivalence between using
the Multivariate Gaussian with an NN and an independent Gaussian with linear regression.
Section 3.7 then reflects that the MAP parameter inference from Section 3.6 is equivalent
to the Bayesian inference in Section 3.5. Sections 3.5, 3.6 and 3.7, thus, reflect that the
stable point parametrization from the Metric regularizer has the MMSE property. The final
two sections, Sections 3.8 and 3.9 discuss the feasibility of performing Metric regularization
as well as calculating the Eigen-spectrum of the Hessian matrix of large NNs. In these
sections we derive a means to do both and present a novel algorithm for computing the
Eigen-spectrum of the Hessian of an NN. The proof that Metric regularization results in the
MMSE parametrization in Sections 3.5, 3.6 and 3.7, as well as the theory to make Metric
regularization and finding the Eigen-spectrum feasible in Sections 3.8 and 3.9 are the two
primary contributions of this chapter. The primary theorem of this chapter is stated as:

Theorem 1: Assuming a twice-differentiable loss function Metric regularization provides
the Minimum Mean Squared Error parameters for a Neural Network.

3.2 Parameters Along a Path are Correlated

In this section, we show that all parameters which are connected by at least one path through
the network are correlated. This motivates the need to account for the correlation between
parameters in deep networks. To show this we use a proof by induction where we show that
regardless of the length of a path through the network, a parameter is always in the derivative
of the other parameters along the same path. In fully-connected networks this means that all
parameters which are not a part of the same layer are correlated. It is possible for parame-
ters of the same layer to be correlated but not guaranteed, and so we ignore it in this section.

We do not make claims in this section about the strength of the correlations or how the

20

strength are affected by increasing the network width or depth. Indeed with complex enough
input data and enough parameter interactions in a large network it is unlikely that any two
parameters will be perfectly correlated. Nonetheless, the aim of this section is to theoretically
motivate the removal of independence assumptions in regularizers, which is not completely
justified in the presence of any parameter correlation. We begin again by using the quadratic
loss function:

Let L =
1

2
(y − f(θ, x))2

Let f(θ, x) = φ(θ2φ(θ1x)) where φ is any activation function.

Thus, f(θ, x) is a single pathway network with one hidden layer.

Then ∇θ1L = ∇θ1

1

2
(y − φ(θ2φ(θ1x)))2

= −(y − φ(θ2φ(θ1x)))φ′(θ2φ(θ1x))φ′(θ1x)x

= (φ(θ2φ(θ1x))− y)φ′(θ2φ(θ1x))φ′(θ1x)x

= φ(θ2φ(θ1x))φ′(θ2φ(θ1x))φ′(θ1x)x− yφ′(θ2φ(θ1x))φ′(θ1x)x

A minimum occurs when ∇θ1L = 0

φ(θ2φ(θ1x))φ′(θ2φ(θ1x))φ′(θ1x)x− yφ′(θ2φ(θ1x))φ′(θ1x)x = 0

φ(θ2φ(θ1x))φ′(θ2φ(θ1x))φ′(θ1x)x = yφ′(θ2φ(θ1x))φ′(θ1x)x

φ(θ2φ(θ1x)) = y

φ(θ1x) =
φ−1(y)

θ2

θ1 = φ−1

(
φ−1(y)

θ2

)
x−1

Therefore the parameters of a one-hidden layer path are correlated and the base case holds.

Inductive Hypothesis: Assume that θ1 is correlated to the parameters of a single path

network of depth N

Inductive Step: We then show that θ1 is correlated to the parameters when depth is N + 1

Let φ̄ represent the N − 1 parameters and activations between the first and last parameters.

Then ∇θ1L = ∇θ1

1

2
(y − φ(θN+1φ̄(θ1x)))2

A minimum occurs when ∇θ1L = 0

φ(θN+1φ̄(θ1x))φ′(θN+1φ̄(θ1x))φ̄′(θ1x)x− yφ′(θN+1φ̄(θ1x))φ̄′(θ1x)x = 0

φ(θN+1φ̄(θ1x)) = y

φ(θ1x) =
φ̄−1(y)

θN+1

21

θ1 = φ−1

(
φ̄−1(y)

θN+1

)
x−1

Therefore, the parameters along a path through the network are correlated since the

final value of θ1 depends on the N other parameters along the path. Proved by induction.

3.3 Effect of Cramér-Rao Lower Bound on Gaussian Distribution

In this section we prove an inequality that results by using the Cramér-Rao Lower Bound
on a Multivariate Gaussian distribution. In particular we prove a condition on θ for where,
in parameter space, a Multivariate Gaussian distribution will place more density than if
its covariance were replaced by the inverse Fisher Information Matrix. This shows that the
inverse Fisher Information Matrix compresses the density of the Multivariate Gaussian closer
around the mean and that the true Multivariate Gaussian (with the covariance matrix) has
longer tails to its distribution. We derive the inequality in this section so that we are aware of
which regions of parameter space are most affected by the change from the inverse-covariance
matrix to Fisher Information Matrix. In particular we derive an inequality which shows that
as the parameter values θ get larger the distribution with the Fisher Information Matrix
lower-bounds the distribution with the inverse-covariance matrix. This is a desirable property
since we use the Fisher Information distribution to derive Metric regularization. This shows
that the regularizer will be most effective in the regions where its is most necessary, where
the parameter values are large.

Consider the case when:

1√
(2π)N |Σ|

exp

(
−1

2
θTΣ−1θ

)
>

1√
(2π)N

exp

(
−1

2
θT I(θ)θ

)√
|I(θ)|

exp

(
−1

2
θTΣ−1θ

)
> exp

(
−1

2
θT I(θ)θ

)√
|I(θ)||Σ|

exp

(
−1

2
θTΣ−1θ +

1

2
θT I(θ)θ

)
>
√
|I(θ)Σ|

exp

(
1

2
θT
(
I(θ)− Σ−1

)
θ

)
>
√
|I(θ)Σ|

1

2
θT
(
I(θ)− Σ−1

)
θ >

1

2
log (|I(θ)Σ|)

θT (I(θ)− Σ−1) θ

log (|I(θ)Σ|)
> 1

From the Cramér-Rao lower bound we know that Σ > I(θ)−1 ⇔ Σ−1 6 I(θ)

As a result: I(θ)− Σ−1 > I(θ)− I(θ)−1 = 0

Similarly: I(θ)Σ > I(θ)I(θ)−1 = I

22

So log (|I(θ)Σ|) is defined and log (|I(θ)Σ|) > log (|I|) > 0

Thus, all terms in the expression are positive and well-defined, with the inequality depending on θ.

3.4 Fisher Information of Gaussian Likelihood and Posterior Dis-
tributions

In this section we present the calculations of the Fisher Information Matrices for three dis-
tributions. The Multivariate Gaussian likelihood distribution in Equation 3.1, the joint like-
lihood distribution of the data and hyper-parameters conditioned on the model parameters
in Equation 3.2 and lastly the posterior distribution over the model parameters conditioned
on the data and hyper-parameters in Equations 3.3. We use all three versions of the Fisher
Information Matrix in Sections 3.5, 3.6 and 3.7.

Let:

P (X|θ) =
1

Z
exp

(
−

P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

)
(3.1)

Then the Fisher Information Matrix of P (X|θ) can be calculated as follows:

I∗(θ) = −∇θ∇θ log(P (X|θ))

We start by applying − log to P (X|θ) :

− log(P (X|θ)) =

P∑
i=1

(yi − f(xi, θ))
2

2σ2
i

+ log(Z)

I∗(θ) =
1

2σ2
i

P∑
i=1

∇θ∇θ(yi − f(xi, θ))
2 +∇θ∇θ log(Z) =

1

2σ2
i

P∑
i=1

∇θ∇θ(yi − f(xi, θ))
2

I∗(θ) = − 1

σ2

P∑
i=1

∇θ ((yi − f(xi, θ))∇θf(xi, θ)) = − 1

σ2

P∑
i=1

∇θ (yi∇θf(xi, θ)− f(xi, θ)∇θf(xi, θ))

I∗(θ) = − 1

σ2

P∑
i=1

(
yi∇θ∇θf(xi, θ)−∇θf(xi, θ)

2 − f(xi, θ)∇θ∇θf(xi, θ)
)

We can also include the hyper-parameter distribution, where θ∗ is the hyper-parameter that we

set to 0 for the remainder of this work.

P (θ∗|θ) =
1√

(2π)N |Σ|
exp

(
−1

2
(θ∗ − θ)TΣ−1(θ∗ − θ)

)
Using the Cramér-Rao lower bound, which states that Σ > I(θ)−1 ⇔ Σ−1 6 I(θ) with the assumption that

θT
(
I∗(θ)− Σ−1

)
θ

log |I∗(θ)Σ|
> 1 (see Section 3.3 for the derivation of this inequality and its utility) we have the following:

1√
(2π)N |Σ|

exp

(
−1

2
θTΣ−1θ

)
>

1√
(2π)N

exp

(
−1

2
θT I∗(θ)θ

)√
|I∗(θ)| such that

23

P (X, θ∗|θ) =
1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
θT I∗(θ)θ +

1

2
log(|I∗(θ)|)

)
(3.2)

Then the Fisher Information Matrix of P (X, θ∗|θ) can be calculated as follows:

I(θ) = −∇θ∇θ log(P (X, θ|θ)) where the first step is to take the − log of Equation 3.2:

− log(P (X, θ∗|θ)) =
1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 +

1

2
θT I∗(θ)θ − 1

2
log(|I∗(θ)|) + log(Z(2π)

I(θ) =
1

2σ2

P∑
i=1

∇θ∇θ(yi − f(xi, θ))
2 +

1

2
∇θ∇θθT I∗(θ)θ −

1

2
∇θ∇θ log(|I∗(θ)|) +∇θ∇θ log(Z(2π)

I(θ) = I∗(θ) +
1

2
I∗(θ)− 1

2
∇θ∇θ log(|I∗(θ)|)

Assuming that the second derivatives are constant means that ∇θ∇θ log(|I∗(θ)|) = 0

I(θ) =
3

2
I∗(θ)

Finally, we can include the prior distribution:

P (θ) =
√
|I(θ)| such that the posterior distribution is:

P (θ|X, θ∗) =
1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
θT I∗(θ)θ

)(√
|I∗(θ)|

)(√
|I(θ)|

)
∫
P (θ|X, θ∗)dθ =

1

Z(2π)
N
2

∫
exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
θT I∗(θ)θ +

1

2
log(|I∗(θ)|) +

1

2
log(|I(θ)|)

)
dθ

(3.3)

Let L(θ) =
1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 +

1

2
θT I∗(θ)θ − 1

2
log(|I∗(θ)|)− 1

2
log(|I(θ)|) then

∇θ∇θL(θ) =
1

2σ2

P∑
i=1

∇θ∇θ(yi − f(xi, θ))
2 +

1

2
∇θ∇θθT I∗(θ)θ −

1

2
∇θ∇θ log(|I∗(θ)|)− 1

2
∇θ∇θ log(|I(θ)|)

∇θ∇θL(θ) = I(θ)− 1

2
∇θ∇θ log(|I(θ)|)

Again assuming that the second derivatives are constant, we have:

∇θ∇θL(θ) = I(θ)

For this work we are primarily working with the integral:

∫
P (θ|X, θ∗)dθ

and its use in deriving a new regularization method for artificial neural networks.

3.5 Derivation of Metric Regularizer from Bayesian Prior

Now that we have motivated the use of regularization methods that account for the de-
pendency between parameters and calculated the necessary Fisher Information Matrices we
can begin to show that the Metric regularization method finds the Minimum Mean Squared

24

Error (MMSE) parametrization of an NN. We begin by deriving Metric regularization from
a Bayesian prior, similar to the derivations of L1 and L2 regularization in Section 2.3. Thus,
by minimizing the error in Equation 3.5 we are finding the MAP solution for the parameters.
The primary lemma of this section is:

Lemma 1: Assuming constant second derivatives Metric regularization provides the Max-
imum A Posteriori solution for a Multivariate Gaussian Prior in a Bayesian framework.

We use both the Gaussian likelihood and hyper-parameter distributions for this derivation.

We begin with:

P (X, θ∗|θ) =
1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
θT I∗(θ)θ +

1

2
log(|I∗(θ)|)

)
(3.4)

Taking the negative of the natural log of this joint likelihood distribution we obtain:

L(θ) = − logP (X, θ∗|θ) =
1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 +

1

2
θT I∗(θ)θ − 1

2
log(|I∗(θ)|) + log(Z(2π)

N
2)

Since log(Z(2π)
N
2) is independent of the θ value it does not change the stable point of θ

and so we can drop it from the loss function.

This gives us the loss function:

L(θ) =
1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 +

1

2
θT I∗(θ)θ − 1

2
log(|I∗(θ)|) (3.5)

We aim to minimize this function with regard to the parameters.

We, thus, take the derivative with respect to θ to find its stable points.

∇θL(θ) =
1

2σ2

P∑
i=1

∇θ(yi − f(xi, θ))
2 +

1

2
∇θθT I∗(θ)θ −

1

2
∇θ log(|I∗(θ)|)

∇θL(θ) = − 1

σ2
i

P∑
i=1

(yi − f(xi, θ))(∇θf(xi, θ)) +
1

2
θT I∗(θ)− 1

2
Tr([I∗(θ)−1]T ∗(θ))

where T ∗(θ) is the tensor of third derivatives and the Trace is over individual 2-D slices

of the 3-D output tensor.

In practice a constant is applied to the regularizer to determine the degree of regularization.

We denote this as λ. In addition we now include the learning rate α.

We then have the parameter update equation:

θi(t+1) = θi(t) + α′
P∑
i=1

(yi − f(xi, θ))(∇θf(xi, θ))− λ′θT I∗(θ) + λ′Tr([I∗(θ)−1]T ∗(θ))

Where α′ =
α

σ2
i

and λ′ =
λ

2
since σ2

i is assumed constants with respect to θ.

Assuming again that the second derivatives are constant we have:

25

θi(t+1) = θi(t) + α′
P∑
i=1

(yi − f(xi, θ))(∇θf(xi, θ))− λ′θT I∗(θ))

This is the learning rule shown in at the start of the chapter with the quadratic loss being used

as a consequence of the Gaussian likelihood distribution being used initially.

3.6 Equivalence to MMSE for Linear Regression

In Section 3.5 we derived Metric regularization as the learning rule which maximizes the like-
lihood of the joint distribution of the data and hyper-parameters dependent on the model
parameters: P (X, θ∗|θ). This is equal to the traditional MAP parametrization. The ne-
cessity to distinguish between a hyper-parameter distribution and then use a Jeffreys prior,
as we have set up in Section 3.4, will be made clear in Section 3.7. In this section we in-
clude the Jeffreys prior and work with the posterior distribution P (θ|X, θ∗). We show that
using this posterior distribution over the parameter space of an NN is equivalent to using
an independent/isotropic Multivariate Gaussian prior to derive the Bayesian parametriza-
tion of a linear regression model. This has been shown to provide the MMSE parameters
for a linear regression model [Advani and Ganguli 2016]. Thus, P (θ|X, θ∗) will provide
the MMSE parametrization for an NN, under the assumption of a Gaussian likelihood and
hyper-parameter distribution and the implied assumption that the parameter covariance is
constant. The primary lemma of this section is:

Lemma 2: Assuming a Gaussian likelihood and hyper-parameter distribution, and con-
stant second derivatives the Bayesian posterior distribution with a Jeffreys prior is equivalent
to the MMSE linear-regression model.

We begin using the Gaussian likelihood and hyper-parameter distributions with a Jeffreys

prior as described above. As a result we have the posterior distribution:

P (θ|X, θ∗) = P (X|θ)P (θ∗|θ)P (θ)

P (θ|X, θ∗) =
1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
(θ∗ − θ)T I∗(θ)(θ∗ − θ)

)(√
|I∗(θ)|

)(√
|I(θ)|

)
Thus:∫

P (θ|X, θ∗)dθ =

∫
1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
(θ∗ − θ)T I∗(θ)(θ∗ − θ)

)(√
|I∗(θ)|

)(√
|I(θ)|

)
dθ

∫
P (θ|X, θ∗)dθ =

∫
1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
(θ∗ − θ)T I∗(θ)(θ∗ − θ)

)(√
|I∗(θ)|

)√3

2

N

|I∗(θ)|

 dθ

Using the Eigen-decomposition we get: I∗(θ) = QΛQ−1 where Q is the ortho-normal matrix of Eigenvectors and

26

Λ is the diagonal matrix of Eigenvalues. Thus Λ = Q−1I∗(θ)Q.

We now use the change of variables formula to project the network parameters onto the ortho-normal basis Q.

The change of variables formula is as follows:∫
P (θ|X, θ∗)dθ =

∫
P (µ|X, µ∗)|Jµ(θ)|dµ

Where µ is the new parameter set after the projection, and Jµ(θ) is the Jacobian matrix of θ with respect to µ.

We have: µ = Q−1θ and µ∗ = Q−1θ∗. Similarly, θ = Qµ. Thus, Jµ(θ) = ∇µθ = ∇µQµ = Q

We also set θ∗ = 0 and so µ∗ = Q0 = 0. Due to the assumption of constant second derivatives, Q is also constant.

Using the change of variables formula with the Eigen-decomposition we obtain the following:∫
P (θ|X, θ∗)dθ =

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
(θ)T I∗(θ)(θ)

)(√
|I∗(θ)|

)(√
|I∗(θ)|

)
|Jµ(θ)|dµ

=

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
(Qµ)T I∗(θ)(Qµ)

)(√
|I∗(θ)|

)(√
|I∗(θ)|

)
|Q|dµ

=

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
µT (QT I∗(θ)Q)µ

)(√
|I∗(θ)|

)(√
|I∗(θ)||Q|2

)
dµ

=

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
µT (QT I∗(θ)Q)µ

)(√
|I∗(θ)|

)(√
|QT I∗(θ)Q|

)
dµ

We now use the fact that Q is an ortho-normal matrix, such that QT = Q−1.

=

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
µT (Q−1I∗(θ)Q)µ

)(√
|I∗(θ)|

)(√
|Q−1I∗(θ)Q|

)
dµ

=

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
µTΛµ

)(√
|I∗(θ)|

)(√
|Λ|
)
dµ

Finally, let |Λ| = C and Λ = vIv−1 such that I(θ) = QΛQ−1 = Q̂vIv−1Q̂−1. This is the rescaling of the Eigen-basis

to result in unit Eigenvalues. We also note that
√
|I∗(θ)| =

√
|QΛQ−1| =

√
|Q||Λ||QT | =

√
|Λ|.

=

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
µT vT Ivµ

)(√
|Λ|
)(√

C
)
dµ

=

∫
1

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
(vµ)T Ivµ

)(√
C
)(√

C
)
dµ

=

∫
C

Z(4/3π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, Qµ))2 − 1

2
||vµ||22

)
dµ

This equivalence relies on the Fisher Information Matrix being non-singular to compute the determinant.

In reality neural networks can have singular Fisher Information Matrix. As a result we can assume there is no noise

in the data and then project only onto the top subspace of the Fisher Information. This is the same as removing

nuisance parameters from linear regression (meaningless parameters with infinite variance as a result). Practically

using the Fisher Information as the metric tensor can be singular when we take flat directions into account.

27

The issue is only relevant for the determinant calculation that we can then do over the top subspace without

losing the equivalence to linear regression.

3.7 Equivalence to Maximum A Posteriori

We conclude the three-part proof in this section by showing that the parametrization from the
Bayesian approach with the posterior distribution P (θ|X, θ∗) is the same as the parametriza-
tion from the MAP solution shown in Section 3.5 with P (X, θ∗|θ). To achieve this we use
the Jeffreys prior as, for the exponential family of distributions, it equates the MAP and
Bayesian solutions [Hartigan 1998]. This section’s lemma is:

Lemma 3: Assuming a Gaussian likelihood and hyper-parameter distribution, and con-
stant second derivatives the Bayesian posterior distribution with a Jeffreys prior is equivalent
to Metric Regularization.

We begin with the previously derived integral of our posterior distribution, with the Gaussian likelihood

and hyper-parameter distributions with the Jeffreys prior.∫
P (θ|X, θ∗)dθ =

∫
1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
θT I∗(θ)θ

)(√
|I∗(θ)|

)(√
|I(θ)|

)
dθ

(3.6)∫
P (θ|X, θ∗)dθ =

1

Z(2π)
N
2

∫
exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
θT I∗(θ)θ +

1

2
log(|I∗(θ)|) +

1

2
log(|I(θ)|)

)
dθ∫

P (θ|X, θ∗)dθ =
1

Z(2π)
N
2

∫
exp (−L(θ))dθ

We assume we have enough data that the data-to-parameter ratio is at the high dimensional limit: P/N = O(1)

In this limit it is justified to perform the Laplace approximation [Zhang et al. 2018],

where it is assumed the model is at a local minimum of parameter space: θ̂

such that ∇θL(θ̂) = 0 and ∇θ∇θL(θ) = H(θ) the Hessian Matrix.∫
P (θ|X, θ∗)dθ ≈ 1

Z(2π)
N
2

∫
exp

(
−L(θ̂)− 1

2
(θ − θ̂)TH(θ̂)(θ − θ̂)

)
dθ∫

P (θ|X, θ∗)dθ ≈ 1

Z(2π)
N
2

exp
(
−L(θ̂)

)∫
exp

(
−1

2
(θ − θ̂)TH(θ̂)(θ − θ̂)

)
dθ∫

exp

(
−1

2
(θ − θ̂)TH(θ̂)(θ − θ̂)

)
dθ is a Gaussian integral and so∫

exp

(
−1

2
(θ − θ̂)TH(θ̂)(θ − θ̂)

)
dθ =

(2π)
N
2√

|H(θ)|

28

This means that

∫
P (θ|X, θ∗)dθ ≈ (2π)

N
2

Z(2π)
N
2

exp
(
−L(θ̂)

)
√
|H(θ)|∫

P (θ|X, θ∗)dθ ≈ 1

Z

exp
(
− 1

2σ2

∑P
i=1(yi − f(xi, θ̂))

2 − 1
2 θ̂
T I∗(θ̂)θ̂ + 1

2 log(|I∗(θ)|) + 1
2 log(|I(θ)|))

)
√
|H(θ̂)|

We also see from Section 3.4 that H(θ̂) = ∇θ∇θL(θ̂) = I(θ̂). Thus:

∫
P (θ|X, θ∗)dθ =

1

Z

exp
(
− 1

2σ2

∑P
i=1(yi − f(xi, θ̂))

2 − 1
2 θ̂
T I∗(θ̂)θ̂ + 1

2 log(|I∗(θ)|)
)(√

|I(θ̂)|
)

√
|I(θ̂)|∫

P (θ|X, θ∗)dθ =
1

Z
exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ̂))
2 − 1

2
θ̂T I∗(θ̂)θ̂ +

1

2
log(|I∗(θ)|)

)
The final equation above is proportional to Equation 3.4 from Section 3.5 with θ = θ̂ :

1

Z
exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ̂))
2 − 1

2
θ̂T I∗(θ̂)θ̂ +

1

2
log(|I∗(θ)|)

)
∝

1

Z(2π)
N
2

exp

(
− 1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 − 1

2
θT I∗(θ)θ +

1

2
log(|I∗(θ)|)

)
Since θ̂ is a maximum of Equation 3.4 with a gradient of 0, θ̂ is a local minimum of Equation 3.5,

our proposed error function with the new regularizer:

L(θ) =
1

2σ2

P∑
i=1

(yi − f(xi, θ))
2 +

1

2
θT I∗(θ)θ − 1

2
log(|I∗(θ)|)

This shows that the stable point of our proposed error function (Lemma 1) is the same parametrization

as the parametrization found from the full Bayesian solution in Equation 3.6. In Section 3.6 we also showed that the

full Bayesian solution is equivalent to the MMSE for linear regression (Lemma 2). Thus, the stable point of our

proposed error function is equivalent to the MMSE estimator for linear regression. This concludes the proof of

Theorem 1 using Lemma 1, Lemma 2 and Lemma 3.

3.8 Computing Multiplication of Hessian by a Vector

A key component of this work is ensuring that Metric regularization is a feasible method to
use for large NNs. This is not trivial, since calculating the Fisher Information Matrix has a
memory and time complexity of O(N2). We use two identities to make Metric regularization
feasible. We use the fact that the Fisher Information Matrix is equal to the Expected Hessian
matrix at a minimum of the loss landscape, as discussed in Section 2.4. It is preferable in
this work to use the Expected Hessian matrix as we can use the Leibniz Integration rule
in Equation 2.4 (the second identity) to change the order of integration and differentiation.
This is useful when we are multiplying the Hessian by a constant vector as it allows us to
perform the multiplication before the second differentiation and so we never have to store

29

an N ×N matrix in memory. We demonstrate this below.

H(θ) = ∇θ∇θL ∈ RN×N and V ∈ RN is some vector independent of θ

H(θ)V = ∇θ∇θLV

= V T∇θ∇θL

= ∇θ(V T∇θL) since V is independent of θ

Likewise for the expected Hessian:

EX[H(θ)] = EX[∇θ∇θL] ∈ RN×N and V ∈ RN is some vector independent of θ

EX[H(θ)]V = EX[∇θ∇θL]V

= V TEX[∇θ∇θL]

We can now use the Leibniz Integration rule (Equation 2.4) to change the order of integration

and differentiation:

= ∇θ(V T∇θEX[L]) since V is independent of θ

Note that V and ∇θEX[L] are N -dimensional vectors and the dot-product V T∇θEX[L] results in a scalar

value before the second derivative is applied.

This can be used to calculate: ∇θ(θTH(θ)θ) = θTH(θ) in the Metric regularizer if we let V = θ̄

where θ̄ is the values of our parameters that are not tracked by automatic differentiation

and we calculate θ̄TH(θ) directly. Since the calculation of the Metric regularizer requires

the calculation of the gradient term:∇θ(θ̄T∇θEX[L]) we note that at no point does the

memory complexity of this calculation grow passed: O(N)

3.9 Simultaneous Power Method using Hessian Multiplication

The simultaneous power method is a computational method for finding the top-k Eigen-
vectors and Eigenvalues of a matrix. Observing the top Eigenvalues of the Hessian of an
NN is a useful way to gain insight into the generalizability of the NN as it has been ob-
serve that model parametrizations with smaller Eigenvalues generalize better [Zhang et al.
2018]. The computation of the Eigen-spectrum directly from the Hessian for any reason-
ably large networks, however, is computationally infeasible due to the memory complexity
of storing the full Hessian matrix. Thus, Algorithm 1 presents a novel modification of the
simultaneous power method which replaces the multiplication between the Q and ∇θ∇θ(L)
matrices, where Q is initialized to a random N × k matrix. Instead we use the memory
efficient Hessian-Vector multiplication from Section 3.8 on each column of Q individually.
The rest of the algorithm proceeds as normal, with the following step being to compute the
Q,R decomposition of the resulting matrix. Using this modified simultaneous power method
now allows us to compute the Eigen-spectrum of realistically sized networks and we use this
algorithm to interpret our results in Chapter 5.

30

Algorithm 1 Simultaneous Power Iteration using Memory Efficient Hessian Multiplication

Require: ∇θ(L) the derivatives of the loss function (L) with respect to the model param-
eters θ.

Require: k the number of Eigenvalues to be returned
Returns: the top-k Eigenvalues of the Hessian Matrix ∇θ∇θ(L)

1: procedure simultaneous power iteration(∇θ(L), k)
2: n← ∇θ(L).dimensions
3: Q← RandomMatrix(n, k) . Randomly initializes an N × k matrix
4: Q, ← QR(Q) . Performs the QR decomposition on Q
5: Qprev ← Q
6: error = 1.0
7: while error > 1× 10−3 do
8: Z ← RandomMatrix(n, k)
9: for j = 0→ k do . Loops over each column of Q separately

10: q ← ∇θ(L)TQ[:, j] . compute column k of Q multiplied by the Hessian
11: Z[:, j]← ∇θq . using memory efficient Hessian multiplication step
12: end for
13: Q,R← QR(Z)
14: error = Sum(Q−Qprev)

2

15: end while
16: return Diag(R) . Returns the diagonal elements of R
17: end procedure

31

3.10 Conclusion

In conclusion we demonstrate the following theoretical results in this chapter. Firstly, in Sec-
tion 3.2, we justify the need for creating algorithms that account for the correlation between
parameters by showing that parameters in separate layers of an NN will always be correlated.
This means that the particular value for a parameter can only be determined in the context
of the rest of the network. We then reflect that Metric regularization, by accounting for the
correlation between parameters, is able to achieve the MMSE parametrization for an NN.
This is the primary theoretical result of this work with the majority of the sections in this
chapter providing pieces of this larger result. One problem with methods that account for
the correlation between parameters is that the complexity of this task grows exponentially
with the number of parameters in the model. With large NNs this makes these methods
restrictive. Thus, Sections 3.8 provides a method of calculating the gradient of Metric regu-
larization which grows linearly with the number of parameters. Thus, we have shown that the
independence assumption often used by regularization methods is unjustified and provided
a practical alternative, in Metric regularization, which provably benefits from accounting for
the correlation between parameters.

32

Chapter 4

Experimental Methodology

4.1 Introduction

In this chapter we outline the experimental methodology used to evaluate the utility of Metric
regularization. We begin in Section 4.2 by describing the five datasets used in this work.
These datasets range in difficulty and interpretability, and so provide a balance between
insight into the dynamics of the regularizer and realism in the kinds of supervised learning
tasks NNs are commonly used for. Supervised learning tasks are either classification or
regression tasks and we evaluate both in this work to investigate if our novel regularization
methods are consistent for different tasks, and by extension for different loss functions and
network architectures. We continue in Section 4.3 by describing the set of learning rules that
we use for our experiments. We evaluate a set of different learning rules to gain insight into
the strengths and weaknesses of the Metric regularizer as well as to further our understanding
of the generalization of NNs. Finally in Section 4.4 we describe our experimental setup as
well as the NN architectures used for each learning task.

4.2 Datasets

4.2.1 XOR and XORD Datasets

The first dataset to be used is the Exclusive-Or (XOR) dataset. This dataset consists
of 4 data points X = {(−1,−1), (−1, 1), (1,−1), (1, 1)} with corresponding labels Y =
{−1, 1, 1,−1}. The network must learn to only classify data points positively when the
input values disagree. This dataset is a classical problem in NN research as it is non-linearly
separable. As a result the multi-layer perceptron was introduced to tackle this problem and
fit the data [Rumelhart et al. 1985], with the use of hidden layers in the model allowing for a
non-linear decision boundary to be learned. This dataset, however, is still relevant today as
it offers interpretable insight into the features learned by an NN and its ability to generalize
[Brutzkus and Globerson 2019]. As done in Brutzkus and Globerson [2019] the input to
hidden layer weights connected to the 2-dimensional inputs can be plotted as vectors on a

33

Figure 4.1: Examples of the input-to-hidden convolutional layer for the XORD task. σ is
some activation function on the hidden layer.

plane. This provides a useful perspective on the ways that the Metric regularizer differs from
the L2 regularizer.

We also use a generalization of the XOR task presented in Brutzkus and Globerson [2019]
known as the XOR Detection (XORD) task. In this task the input dimension is 2C where
C is the number of pairs of input neurons. Each neuron pair is an XOR task on its own,
with neurons still having a value of −1 or 1. Instead of using H fully-connected hidden
neurons like for the XOR task, we now use H hidden 1-D convolutional layers with a filter
size of 2 and step size of 2. The step size of 2 is used so that the filters pass over each input
pair individually without an overlap between pairs. An example of this convolutional layer
structure is shown in Figure 4.1. The task is then for the network to detect if any of the input
pairs has a positive pattern. The hidden to output neurons are fully-connected. We train two
networks for this task. One network uses the Tanh activation on its hidden layers, while the
other uses the ReLU activation. The convolution filters consist of 2 parameters values and so
we can plot these filters in the same manner that we plotted the input to hidden neurons for
the XOR task. Similarly this provides some interpretability of the model. Most importantly
for the XORD dataset, we can now have an unseen test dataset since we can arbitrarily
increase the dimensionality of the input layer by adding more input pairs. In particular we
use 5 input pairs resulting in 1024 possible unique input strings of size 10. We generate 12
training samples and 10 test samples to form our dataset. Half of the samples in both sets
have a positive label and half have a negative label. All positive samples have at most 1
positive input pair. These settings for generating the dataset were determined empirically
and designed to expose overfitting when using vanilla-SGD as the optimization algorithm.
None of the regularization techniques were used to determine the dataset parameters to avoid
biasing the data in favour of one regularizer.

34

Figure 4.2: Examples of the MNIST dataset [LeCun et al. 2010].

4.2.2 MNIST Datasets

The third dataset used for our experiments is the standard MNIST dataset [LeCun et al.
2010]. This dataset is of images of handwritten digits with 60000 training set images and
10000 test set images. Images are grouped into one of the categories {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
reflecting which digit an image represents. An NN must learn to predict the correct label
for an image with a one-hot encoding being used as labels over the NNs 10 output neurons.
In addition, all input pixel values are normalized to be in the range [0, 1]. Figure 4.2 show
examples of the MNIST dataset.

4.2.3 Synthetic Dataset

The fourth dataset is a synthetic dataset sampled using the function y = a sin (XW)+aXB+
ε where the inputs and noise are sampled from uniform distributions: X ∼ Uniform(0, b)
and ε ∼ N (0, σ̂). The ground truth weights and biases are also sampled from a uniform
distribution: W,B ∼ Uniform(0, c). The dimensionality of these variables are X ∈ RM×N

+ ,
while W,B ∈ RN , ε ∈ RM and a, b, c, y, σ̂ ∈ R. The four parameter values a, b, c and σ
are set to control the degree of variance in the data. N and M are the number of data
points and input dimensions respectively. Due to the fact that we are generating new data
for each experiment we do not have a validation dataset. We use 80% of the N data points
for training and 20% as unseen test data (which is used to tune hyper-parameters except
for on the final run). For the results shown in Section 5.5 the synthetic dataset is created
using the settings of N = 2000, M = 256, a = 1.0, b = 2.0, c = 1.0, σ̂ = 1.0 resulting in
an unconditional variance on y of 29.656715 for the sigmoid dataset and 30.980389 for the
ReLU dataset. These hyper-parameters were determined empirically using the SGD based
learning rules to obtain a dataset which was challenging but also ensured the models could

35

Figure 4.3: Examples of the CIFAR-10 dataset [Krizhevsky et al. 2009]

overfit to the training data. The two kinds of SGD learning rules are described in Section
4.3. We only used these two learning rules to avoid biasing the results in favour of any of
the explicit regularization methods.

4.2.4 CIFAR-10 Dataset

The final dataset used is the CIFAR-10 Dataset [Krizhevsky et al. 2009]. This dataset is
comprised of 60000 32 × 32 RGB images, with the input pixel values normalized to be in
the range [0, 1]. There are 10 classes {airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck} with 6000 images in each class. The dataset is split into 5 training batches
totalling 5000 images from each class (some batches may contain more of one class than
others) and a final test batch containing 1000 images from each class. Each image contains a
single example of any of the 10 possible objects or animals, with a unique label so that there
is no instance where two or more possible labels could be appropriate. We use a one-hot
encoding to represent the labels for the dataset to be used with a 10-dimensional output
layer. Examples of images and their corresponding labels are shown in Figure 4.3.

4.3 Learning Rules

For all of the datasets described above we compare the same set of learning rules summarized
in Table 4.1. The first learning rule is SGD on the loss function L(X, θ) that provides us
with our benchmark. SGD differs from GD only in the fact that it uses a subset of the
data to make parameter updates, as opposed to using the full dataset at once. This makes
the algorithm more memory efficient. SGD is the most commonly used learning algorithm

36

for training NNs and has also been shown to reduce overfitting compared to GD [Zhang et
al. 2018] and so is an appropriate benchmark for this work. The Metric learning rule is the
primary rule being investigated and corresponds to the loss function derived and investigated
in Chapter 3. This learning rule is SGD on the loss function with regularization based on the
Riemannian distance calculated using the Fisher Information Matrix as the metric tensor.
The following four learning rules, SGD with L2 regularization and three novel variants of
SGD with L2 regularization, are used to compare with the Metric learning rule and gain
insight into the strengths of different regularization methods:

• L2 regularization: We derived this learning rule in Section 2.3 and showed that it
corresponds to using an independent Multivariate Gaussian as the prior of a Bayesian
model. As a result of the independence assumption, the regularizer forces all parame-
ters of a model towards 0 at a fixed regularization rate. As a result it minimizes the
L2-norm of the model parameters: ||θ||2 =

√
(θT θ). The L2 learning rule is a useful

comparison as it reflects whether minimizing any norm of the model parameters (using
Euclidean or Riemannian distance) is sufficient to avoid overfitting and is also widely
used in practice.

• Selective L2: This regularization method is of particular interest as it is used to reflect
the antithesis of the Metric learning rule. For Selective L2 we only regularize the model
parameters that have a small effect on the Riemannian distance. As a consequence only
the parameters that are not useful for fitting the training data are regularized. This
is in contrast to the Metric learning rule where parameters with a larger Riemannian
distance (significant parameters) are regularized more. In Table 4.1 we see that the
selection of which parameters to regularize depends on a multiple of the max gradient
of the Riemannian distance (the right side of the middle column and fourth row). This
condition is evaluated individually for each parameter but the max is taken per layer.
This is used to adjust to the different impact of layers in the network but relies on the
parameters in a given layer having a similar impact on the Riemannian distance.

• L2 Stopped: This learning rule is used to investigate if L2 regularization can be de-
structive if applied for too long. To achieve this we use standard L2 regularization for
the first τ epochs of training and then switch to using SGD for the remaining epoch. τ
is a hyper-parameter of this learning rule and is shown in Table 4.2. In particular this
learning rule investigates if minimizing the parameter norm for a reasonable amount
of time after initializing in the large regime and then running SGD can recover the
performance of running SGD directly from the small regime.

• L2 Stopped Selective: This learning rule investigates a similar trend to L2 Stopped
except when L2 regularization is stopped then Selective L2 is used until convergence.
This is used to determine if there is benefit to reducing the magnitude of all model pa-
rameters before switching to being selective about the regularization. This will reflect if

37

significant parameters should be moderately regularized before being left to fit the data.

A second consideration in our learning rules is how they relate to the initialization of the
model. It has been shown [Geiger et al. 2020] that initializing parameters with small weights
provides enough of an inductive bias for the model to naturally avoid overfitting, however,
initializing with small or large weights is not consistently better or worse for learning the
training data. Rather, the benefit of either initialization regime on training data performance
is circumstantial and depends on the model architecture and data [Geiger et al. 2020]. For
brevity we refer to these initialization strategies as the small and large regimes. As a result
it is necessary to investigate the SGD and Metric learning rules using both regimes, while
the large weight regime is used for the remaining learning rules. This allows us to establish
if the small weight regime has enough of an inductive bias to negate the effects of overfitting.
This also lets us compare the model weights from the implicit regularization of small weight
initialization to enforced small norm solutions from regularizers like L2.

In the learning rules described in Table 4.1 we use the Fisher Information Metric I(θ(t)). This
matrix, however, is extremely difficult to compute and hold in memory and a contribution
of this work is finding a way to make our regularizers practical. Instead of using the Fisher
Information Matrix we used the Expected Hessian matrix, since we can use the efficient
Hessian - Vector multiplication from Section 3.8 to calculate all Metric Tensor - Parameter
Vector multiplications in the regularizers. Hence we turn a regularizer term, θT(t)I(θ(t)), with

compute and memory complexity of O(N2) and O(N2) respectively into a regularization
term, ∇θθ

T
(t)∇θEX[L], with complexities of O(N) and O(N). As shown in Section 3.8, the

reason for the efficiency of using the Expected Hessian over the Fisher Information Matrix
is because of the Leibniz Integration rule allowing us to change the order of differentiation
and integration (averaging over the data points) with the Hessian and then performing the
multiplication with the parameter vector before the second differentiation. In practice this
θ vector is made constant and not affected by automatic differentiation. Thus, only the
derivative of the loss (L) relative to θ is computed. As a result we never hold an N × N
matrix in memory, removing the O(N2) memory complexity, or have to perform more than
N computations for a single operation, removing the O(N2) time complexity. Usually to
compute the Hessian matrix the second derivative computes N second derivatives for each
of the N first derivatives, and then this would be multiplied by θ to obtain the final values
(the same is true for Fisher Information Matrix). By performing θT(t)∇θEX[L] first we reduce

the expression to a scalar value, and then the second derivative ∇θθ
T
(t)∇θEX[L] provides the

final N values from this scalar value.

While the use of the Hessian solves the computational issues with the Metric-based regulariz-
ers, it is the source of another issue. This is the fact that the Hessian and Fisher Information
Matrix are only equal at a critical point in the loss landscape. In addition the Fisher In-
formation Matrix is positive definite everywhere in parameter space, while the Hessian is

38

Table 4.1: Set of Learning Rules and Initialization Regimes used in the experiments.

Name Learning Rule Regime

SGD (Benchmark) θ(t+1) ← θ(t) − α∇θL(X, θ(t)) Small,Large
Metric θ(t+1) ← θ(t) − α∇θL(X, θ(t))− λθT(t)H(θ(t)) Small,Large

L2 θ(t+1) ← θ(t) − α∇θL(X, θ(t))− λθ(t) Large

Selective L2 θ(t+1) ←

{
θ(t) − α∇θL(X, θ(t)) |θT(t)H(θ(t))| ≥ ωmax (θT(t)H(θ(t)))

θ(t) − α∇θL(X, θ(t))− λθ(t) |θT(t)H(θ(t))| < ωmax (θT(t)H(θ(t)))
Large

L2 Stopped θ(t+1) ←

{
θ(t) − α∇θL(X, θ(t)) t ≥ τ

θ(t) − α∇θL(X, θ(t))− λθ(t) t < τ
Large

L2 Stopped Selective θ(t+1) ←


θ(t) − α∇θL(X, θ(t))− λθ(t) t < τ

θ(t) − α∇θL(X, θ(t))− λθ(t) |θT(t)H(θ(t))| < ωmax (θT(t)H(θ(t))); t > τ

θ(t) − α∇θL(X, θ(t)) |θT(t)H(θ(t))| > ωmax (θT(t)H(θ(t))); t > τ

Large

not. Thus, we use the absolute value of the Expected Hessian in our regularizers, which has
also been done in prior work with second-order optimization methods [Dauphin et al. 2014].
Using the absolute Expected Hessian is justified in our case as it still serves the purpose of
reflecting which parameters of the network affect the loss more and can be used to adjust the
regularization accordingly. It is necessary to note the loss of precision that occurs anywhere
except at a critical point in parameter space and we accept this as a practical consideration
of using the Metric-based regularizers. We, thus, now switch our notation from θT I(θ) to
θTH(θ) where H(θ) is the Hessian matrix. This does not explicitly reflect the use of our
efficient calculation of the derivative, however, it is used in all cases.

4.4 Experimental Setup

The empirical results shown in Chapter 5 are obtained by training the same network architec-
ture repeatedly from different initializations using each learning rule shown in Table 4.1. The
architecture, number of training runs and hyper-parameters vary depending on the dataset
being used. To ensure that we are getting a fair comparison between the learning rules we
ensure that each learning rule is started from the same set of initializations. For example,
if we intend to train a network 30 times for each learning rule, then 30 seeds are created
and used to initialize each network. This only includes initializations from the same regime,
since we are also comparing between the small and large weight initialization regimes. Thus,
all weight initializations from the same regime are the same, however, initializations from
different regimes are necessarily different. For each learning rule we track the training data
accuracy/error, test data accuracy/error and L2 parameter norm at the end of each epoch
of training (where accuracy is used for classification tasks and error for regression tasks with

39

the mean squared error). We then use the repeated training runs to obtain the mean and
standard deviations of these metrics at each epoch. In addition, we also calculate the mean
and standard deviation of the top values from the Eigen-spectrum of the Expected Hessian
matrix of the network parameters at the end of each run.

An important consideration for our experiments is how we set the hyper-parameters for each
learning rule and initialization regime. To begin with we optimize hyper-parameters that
are common between all learning rules using the training and validation results on vanilla
SGD. These hyper-parameters are the learning rate and batch size. Batch size is the same
for all training runs, while different initialization regimes have their own optimized learning
rate that is the same for all learning rules using that initialization regime. For all datasets
except CIFAR-10 we sample the weights uniformly between 0 and a maximum value that is
set based on the initialization regime we are aiming to use. This maximum sampling value
is also dependent on the network architecture being used and the dataset. For each exper-
iment we empirically determine this value using SGD only, to avoid biasing the results of
the different regularizers. Setting this maximum value too small or too large will also break
the training procedure altogether. We, thus, found values that enabled the model to fit the
training data perfectly but reproduced the generalization gap between the two regimes seen
in the literature [Geiger et al. 2020]. For CIFAR-10 variance scaling with a Glorot Normal
distribution [Glorot and Bengio 2010] was used to initialize the weights where we changed
the scaling to find the different initialization regimes.

The learning rule specific hyper-parameters are then optimized in parallel. These include the
L2, Metric and Selective L2 regularization rates, the point that regularization was stopped
for the epoch based regularizers (τ in Table 4.1) and the selection threshold for the selective
regularizers (ω in Table 4.1). The L2, Metric and Selective L2 regularization rates are opti-
mized in a standard fashion using validation data. To ensure that using a fixed learning rate
while optimizing these hyper-parameters did not bias the results in favour of one learning
rule, we also do a full parameter sweep for the learning rate and regularization rates for
MNIST with ReLU activation and the synthetic dataset with Tanh activation. Naturally
this kind of approach is note feasible due to the number of experiments being run. How-
ever, the results from both hyper-parameter optimization approaches agree and thus, we
are comfortable to proceed with the hyper-parameter optimization as described above for
the experiments. For the stopping point of the epoch based regularizers, we set this value
as any epoch after which a large regime network could have a similar parameter L2-norm,
||θ||2 =

√
(θT θ), to an SGD model from the small regime. The purpose of these regularizers

was to identify if indiscriminately regularizing the weights into the small regime and then
stopping regularization would match training with SGD from the small regime. Lastly the
selection threshold on the selective regularizers was optimized using validation accuracy as
well as the parameter norms. Qualitatively, if the parameter norm decreased too signifi-
cantly past the small initial weight regime norm then we decrease the threshold to be less

40

selective about which parameters are important to the network (and so fewer parameters get
regularized). If the parameter norm decreased too little then we increase the threshold so
that we regularize more parameters.

Another necessary consideration around the generality of our results is the activation func-
tions used in the network architectures. It has been observed that changing the activation
function of a network can have a significant impact on the performance of the network. Thus,
it is also necessary for us to verify all of the regularizers on different activation functions.
We examine two different activation functions, the hyperbolic-tangent (Tanh) and Rectified
Linear Unit (ReLU). We decided on these two functions as they are representative of two
different types of activations, sigmoidal shaped activations and ReLU based activations (in
recent work there have been multiple variants of the ReLU activation created [Maas et al.
2013; Clevert et al. 2015; Klambauer et al. 2017]). For classification tasks we use the Softmax
function on the output layer with the cross-entropy loss and for regression tasks we use a
linear output layer with quadratic loss. The datasets, final hyper-parameters and type of
architecture used for the experiments are summarized in Table 4.2. Table 4.2 also links each
experiment to a diagram of the architecture used.

Figure 4.4 shows the architecture used for the XOR task. This is a simple fully-connected
network with one hidden layer. The simplicity of this network allows us to interpret the pa-
rameters learned during the XOR task which is useful to understand our various regularizers.
Figure 4.5 shows the architecture for the XORD task. The motivation for this network is
again simplicity, however, in this case the one hidden layer is convolutional. For the MNIST
task we use the network shown in Figure 4.6. This network has two hidden fully-connected
layers and is the same network used in Geiger et al. [2020] to analyse the small and large
initialization regimes. The network for the synthetic regression dataset shown in Figure 4.7
is similar with two fully-connected hidden layers. For both of the network architectures used
on the MNIST and synthetic datasets we use reasonably sized networks on more difficult
tasks to start challenging the regularizers, however, the architectures are able to completely
fit the training data without more complicated layers such as convolutional layers. Lastly
Figure 4.8 shows the architecture used for the CIFAR-10 dataset. This is the most compli-
cated network and is used to show the effect of our regularizers on a large network, commonly
used in practice with various layers types and on a complicated dataset. We believe that
these architectures and datasets provide an incremental increase in difficulty while providing
the best combination of interpretability and practicality.

Finally, to obtain the top Eigenvalues of the network parameters at the end of training
for each model we use Algorithm 1 from Section 3.9. This algorithm is a novel version of
simultaneous power iteration designed to find the top Eigenvalues of the Hessian of an NN.
As a result we are able to find the Eigenvalues for realistically sized networks in an efficient
manner, something that previously was impossible without multiple GPUs. In our case a

41

Table 4.2: Hyper-parameters used in each experiment.

XOR 4.4 XORD 4.5 MNIST 4.6 Synthetic 4.7 CIFAR-10 4.8

Activation Tanh ReLU Tanh ReLU Tanh ReLU Tanh ReLU Tanh ReLU

Learning Rate (Small) 0.12 0.12 0.02 0.05 0.001 0.001 0.0002 0.0002 0.005 0.005
Learning Rate (Large) 0.0015 0.002 0.02 0.002 0.001 0.001 1e-4 6e-5 0.005 0.005

Metric Reg Rate 0.008 1e-4 1e-4 0.001 1e-4 1e-4 5e-4 2e-6 1e-5 1e-5
L2 Reg Rate 0.001 0.001 1e-5 1e-4 1e-5 1e-5 1e-4 1e-5 1e-5 1e-5

Selective L2 Reg Rate 0.1 0.1 0.001 0.001 0.001 1e-5 0.1 0.001 5e-5 5e-5
τ 280 280 500 500 280 280 600 600 490 490
ω 0.1 0.05 0.01 0.1 0.001 0.01 0.0005 0.005 0.02 0.02

Init σ2 (Small) 0.03 0.03 0.4 0.2 0.1 0.1 0.05 0.02 0.2 0.2
Init σ2 (Large) 2.3 1.7 4.0 2.0 2.0 2.0 0.5 0.2 5.0 5.0

single GPU is used. This now affords us the opportunity to empirically evaluate whether
smaller Eigenvalues from the Hessian of the loss function correspond to better generalization
as is commonly found in previous literature [Dauphin et al. 2014]. This is also another
result that we can use to interpret the learning rules in Table 4.1. Since the creation of
this algorithm is a contribution of this work, we empirically verify that it is correct in
Section 5.2. To determine the number of Eigenvalues to obtain from the simultaneous power
method we use the number of output neurons from the model. The only exception is for
the synthetic regression dataset where we obtain 3 Eigenvalues even though the model has
1 output neuron. We choose to match the number of output neurons as previous work has
shown that the number of significant Eigenvalues in the model matches the number of output
neurons [Gur-Ari et al. 2018]. For all learning rules we calculate the Hessian relative to the
loss portion of the learning rule only to ensure that we are making a fair comparison.

42

Figure 4.4: XOR Network Architecture

Figure 4.5: XORD Network Architecture

43

Figure 4.6: MNIST Network Architecture

Figure 4.7: Synthetic Data Network Architecture

44

Figure 4.8: CIFAR-10 Network Architecture

45

Chapter 5

Experimental Results

5.1 Introduction

In this chapter we present the results of the experiments described in Chapter 4. We begin
by verifying the correctness of the Efficient Power Method algorithm in Section 5.2. This
algorithm is described in Section 3.9 and used to calculate the Eigenvalues of the Hessian
matrix from the loss of an NN. The following sections are in the same order as the sections
of Chapter 4. We begin with the XOR and XORD datasets’ results in Section 5.3. We
then follow with the MNIST and Synthetic datasets in Sections 5.4 and 5.5 respectively. We
conclude with the results of the CIFAR-10 experiments in Section 5.6.

5.2 Checking Efficient Power Method

In this section we briefly check that the Efficient Power Method algorithm that we outline
in Algorithm 1 obtains the same top Eigenvalues from the loss of an NN as performing the
(standard) Power Method on the full Hessian matrix of the loss function. To verify this we
train a small fully-connected model (as large as we could fit on one GPU while calculating
the full Hessian) with layer size [100, 10, 5] to perform a sub-task on the MNIST dataset.
The architecture is shown in Figure 5.1. For this task we extract the center 10× 10 square
from each image and flatten it as input to the model. To ensure that this small network
could still fit the data we decrease the difficulty by sampling images and labels exclusively
from the first 5 digits and the model aims to classify this subset of the MNIST data. At
the end of training we calculate the top 15 Eigenvalues using both methods outlined above.
Figure 5.2 shows the resulting two sets of Eigenvalues. We see that the two methods match
exactly. Thus, we may use the Efficient Power Method to accurately obtain the Eigenvalues
of the Hessian matrix for realistically sized model, and we do so to gain insight into the
generalizability of these models.

46

Figure 5.1: Network Architecture used to verify that the Efficient Power Method algorithm
provides the correct output.

Figure 5.2: Top 15 Eigenvalue from the Standard Power Method on the full Hessian of the
loss (blue) compared to the Eigenvalues determined by the Efficient Power Method from
Algorithm 1 (orange). Distance (using square root of L2 -norm) between Eigenvalues from
Standard vs Efficient Power Method: 0.00002146.

47

5.3 XOR Datasets

The mean training accuracy of the eight learning rules shown in Table 4.1 on the XOR
dataset can be see in Figure 5.3 for the Tanh activation. Firstly we note that all learning
rules converge to a mean accuracy of roughly 100% by the end of training. There is some
variance towards the end of training for the Metric Small Regime and Metric Large Regime
updates. For the large regime Metric learning rules the variance is constant over multiple
epochs, indicating that there were some training runs where the accuracy never reached
100%. For the small regime Metric learning rule the variance is non-zero on certain epochs,
indicating that the accuracy dropped below 100% momentarily but then returned to perfect
accuracy. Further, we note that for this dataset and Tanh activation the large initialization
regime trains faster than the small initialization regime. In addition regularization slows
down convergence of the models as expected.

In Figures 5.4 we can see that the large initialization regimes maintain a large weight norm
throughout training compared to the small initialization regime models. This is significant
as practical and theoretical prior work has found that small-norm model parametrizations
generalize better than large-norm parameterizations [Bansal et al. 2018]. We note that for
the large regime, without regularization the model norm stays relatively constant (see SGD
Large Regime) and even when L2 regularization is stopped early the weight norm then re-
mains constant (L2 Stopped). A further observation is the consistency of the final weight
norm for the Selective L2 and L2 Stopped Selective learning rules. This indicates that the
Selective L2 regularizer produces a similar final weight norm regardless of when it is applied
or from the initial weights to which it is applied (as long as they are sufficiently large to
begin with). It is also apparent that the small initialization regime produces the lowest norm
solutions without regularization. From these results we may conclude that all learning rules
were able to learn the XOR task to a near perfect level, with training time being the primary
difference between the learning rules and initialization regimes.

A benefit of the XOR dataset, as mentioned in Section 4.2.1, is the fact that the input-to-
hidden layer weights can be plotted as vectors on a 2-dimensional plane and interpreted. In
particular each vector shows that a pair of input-to-hidden parameters (one connected to
each input) are responding to a certain feature. For example if a vector is pointing directly
at the (−1,−1) input then we know that a pair of parameters is looking particularly for this
pattern in the input values. The length of the vector then shows how sensitive the model is
to that input pattern, or in other words how confident the model is that the input pattern
is helpful for separating the data. These plots are shown in Figure 5.5 for each learning
rule at the end of training. From these plots we can see that the small initialization regime
results in a minimal set of significant parameters being learned which point directly at two
of the input patterns. By contrast we see that the large initialization regime has parameters
pointing in a variety of different directions, most of which do not correspond exclusively to

48

Figure 5.3: Mean Train Accuracy for XOR data with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations.

Figure 5.4: Mean Parameter Norms for XOR data with Tanh Activation over 10 runs.
Shaded region is 2 standard deviations.

49

Figure 5.5: Plot of all input-hidden layer parameters from XOR data with Tanh Activation.

50

Figure 5.6: Mean Train Accuracy for XOR data with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations.

a single input pattern. We also note that for the SGD, Metric, L2 and L2 Stopped learning
rules in the large regime more significant parameters are used than with the Selective L2
and L2 Stopped Selective learning rules in this regime. The effect of L2 in this case appears
to be in reducing the norm of the individual vectors but not in reducing the quantity of
significant vectors in the model. While Selective L2 is effective at reducing the quantity of
significant parameters, it still maintains more significant parameters than the small regime
models. Yet it is more apparent that each vector corresponds to a certain input pattern than
with the other large regime models.

Similar conclusions can be drawn for the XOR dataset when the ReLU activation is used.
The primary difference can be seen in Figure 5.6, that the small weight regime trains faster
in this case and that the Metric learning rule from the large regime was unable to achieve
a mean accuracy of 100%. All other learning rules achieve 100% training accuracy with no
variance passed epoch 250. Additionally in Figure 5.8 we see that the small weight regime
now uses 4 significant vectors each corresponding exactly to one of the input patterns. The
Selective L2 learning rules in this case use only three significant vectors, however, one of
the three does not correspond exactly to a single input pattern. It is still apparent that the
Selective L2 regularizer results in fewer significant vectors being used compared to the other
large regime models and it more closely resembles the small regime vector plots.

51

Figure 5.7: Mean Parameter Norms for XOR data with ReLU Activation over 10 runs.
Shaded region is 2 standard deviations.

For the XORD dataset we look at the mean squared error as opposed to the accuracy as
we found it helped with separating the performance of the models. The mean train error
of the model with Tanh activation is shown in Figure 5.9. From these results we can see
that all models achieve a near 0 error. The two small initialization regime models and the
two Selective L2 based learning rules are the only learning rules that do not achieve exactly
zero on this task. We again see that the large initialization regime models train faster than
the small initialization regime models, which is consistent with our findings on the XOR
task. Looking at the test error in Figure 5.10, however, we see that the small initialization
regime models achieve the lowest test error, followed by the Selective L2 and L2 Stopped
Selective learning rules. Thus, the models that achieved the lowest training error also had
the worst test accuracy, resembling the traditional notion of overfitting. Counter-intuitively
the two L2 based learning rules generalized the worst on average. Looking at the norms in
Figure 5.11 we see that the magnitude of the norms of the weights is a good indication of
the generalizability of the model, with the models that do the best also having the lowest
norm.

Lastly, we may again plot the input-to-hidden weights of the models in Figure 5.12, this time
for the learned convolutional filters. We see that the small initialization regime results in
models that use a few significant vectors that clearly correspond to individual input patterns.
The contrast with the large initialization regime models is more severe here than with the
XOR task. In this case we see that the convolutional filters explode in magnitude and do

52

Figure 5.8: Plot of all input-hidden layer parameters from XOR data with ReLU Activation.

not correspond exactly to any particular input pattern. The Selective L2 filters have the
smallest magnitudes of the large regime models and have the least significant vectors that
do not point in the direction of one input pattern. The Metric regularizers do not help
with tightening the filters and appear to have the most spread input filter vectors. L2, L2
Stopped and L2 Stopped Selective appear to result in filters that point more in the direction
of particular input patters compared to the SGD model from the large regime. The benefit

53

Figure 5.9: Mean Train Errors for XORD data with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations.

Figure 5.10: Mean Test Errors for XORD data with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations.

54

Figure 5.11: Mean Parameter Norms for XORD data with Tanh Activation over 10 runs.
Shaded region is 2 standard deviations.

of the XORD task is that we can see how the pattern of the input filters correlate to the
generalizability of the model. From these results it is clear that the models with smaller-
magnitude and fewer significant vectors generalize better than the models that have larger
filter vectors that are more spread out. It is not surprising then that the Selective L2 learn-
ing rule aids generalizability more than the Metric learning rule as Selective L2 regularizes
the insignificant parameters of the model, which are the filters that do not correspond to
a single input pattern. In contrast the Metric regularizer regularizes the filters that point
towards particular input patterns as they are the most useful for reducing the model’s loss.
This results in filters that are more fanned out, as can be seen in Figure 5.12.

If we analyze the results of the XORD task with the ReLU activation we see that the small
regime models achieve 0 training error in Figure 5.13, while the large regime models do not.
In particular the Metric large regime model obtains a relatively large training error. The
relative performance is the same for test accuracy in Figure 5.14. Note that the training
error is larger than the test error because there is a larger sample of training examples and
we report the sum of the error. It is worth noting that in this case the Metric regularizer
does appear to offer some benefit to the small regime model’s generalizability. The Metric
regularizer still achieves the worst results from the large regime. The norms of the models
again provide an accurate indication of the generalizability of the models in Figure 5.15. Fi-
nally, looking at the convolutional filters plotted in Figure 5.16 we see that the small regime
results a few significant filters being learned that correspond to particular input patterns.

55

Figure 5.12: Plot of all input-hidden layer parameters from XORD data with Tanh Activa-
tion.

56

Figure 5.13: Mean Train Errors for XORD data with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations.

The large regime models use more filters that do not capture individual input patterns.
The magnitudes of these filters are smaller when using the ReLU activation because ReLU
does not saturate like the Tanh activation, and initializing the model with larger weights
made training unstable.

By empirically analyzing the performance of the learning rules and qualitatively interpreting
their final input-to-hidden parameters we can begin to gain some intuition for why there
is a discrepancy in the generalizability of the small and large regime models and how to
regularize models to replicate and potentially improve upon the implicit regularization of
small weight initialization. In particular we see that small weight initialization does more
than just limit the model to small-norm solutions but also limits the model to a minimal
use of significant parameters that describe the dataset more concisely. While the XOR and
XORD datasets are easy tasks, the interpretability that they offer is helpful for us to analyze
the results on the more realistic datasets.

5.4 MNIST Datasets

We begin this section by looking at the training accuracy of both the Tanh and ReLU mod-
els shown in Figures 5.17 and 5.20 respectively. Firstly we note that most learning rules
were able to achieve over 94% mean training accuracy on this dataset. The exceptions to
this is Metric regularization with Tanh activation which achieves only about 70% accuracy.

57

Figure 5.14: Mean Test Errors for XORD data with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations.

Figure 5.15: Mean Parameter Norms for XORD data with ReLU Activation over 10 runs.
Shaded region is 2 standard deviations.

58

Figure 5.16: Plot of all input-hidden layer parameters from XORD data with ReLU Activa-
tion.

59

For all learning rules except the Metric learning rule we see that the ReLU activation does
significantly better than the Tanh activation for this dataset. Tanh activation models learn
faster from the small regime while the ReLU activation learns faster from the large regime.
The discrepancy here in training speeds is likely due to the fact that ReLU does not satu-
rate when pre-activations are large, while Tanh does. With both activations the speed of
training is also the primary difference between the small and large regimes since the initial-
ization regime has little effect on the final accuracies even between the SGD models. A final
observation is that if L2 is run for too long the training accuracy of the model begins to
decrease. This effect is mitigated when using Selective L2 (with a larger regularization rate
when using Tanh, shown in Table 4.2) with Tanh and completely removed when using ReLU.

Looking at the test accuracies of the models for Tanh (Figure 5.18) and ReLU (Figure 5.21)
we see that the effect of L2 eventually decreasing the accuracy is also present but far less se-
vere. In contrast using the L2 Stopped and L2 Stopped Selective learning rules again removes
this effect entirely and both learning rules achieve superior training and test performance.
The generalizability of Selective L2 for MNIST is more evident with Tanh than ReLU activa-
tions. With Tanh it falls short of the small regime test accuracies by around a percent. With
the ReLU activation, however, Selective L2 does worse than all other regularizers except for
Metric regularization but L2 Stopped Selective is still the best large regime model (tying
with Selective L2 when using Tanh). From these results it appears that regularizing all pa-
rameters in the early stages of training is beneficial, but it is necessary to switch to selective
regularization to avoid over-regularizing. It is necessary to note the poor performance of the
Metric regularizer irrespective of the activation function used. It appears that regularizing
the parameters that are important to fitting the training data is detrimental to both training
and test accuracy. Significantly, there is a difference in test performance between the small
and large regimes. It is clear that the small regime always achieves superior test accuracy to
the large regime when using SGD. This highlights the implicit regularization training from
the small regime has on a model.

Two new observations can be made from the plots of the weight norms in Figures 5.19 and
5.22. Firstly we see that the epoch where L2 regularization begins to have adverse effects is
also near the epoch where the norm of the L2 models intersects the norm of the vanilla SGD
model from the small regime. This is an indication that training the model from the small
regime naturally results in model parameters with close to the minimum possible norm.
Secondly we note that in the Tanh plot of Figure 5.19 the models trained using the L2,
Selective L2 and L2 Stopped Selective learning rules from the large regime all have similar
final weight norms. None of these models beat SGD from the small regime, supporting the
previous point, but they also generalize differently between themselves. We see that while
Selective L2 and L2 Stopped Selective reduce the weight norm to a similar level as L2, the
regularization to such a low norm is only detrimental to L2. This is further evidence that the
negative effect of L2 on training accuracy is due to the un-selective nature of the regularizer,

60

Figure 5.17: Mean Train Accuracy for MNIST with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

Figure 5.18: Mean Test Accuracy for MNIST with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

61

Figure 5.19: Mean Parameter Norms for MNIST with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

Figure 5.20: Mean Train Accuracy for MNIST with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

62

Figure 5.21: Mean Test Accuracy for MNIST with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

Figure 5.22: Mean Parameter Norms for MNIST with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

63

and that by being selective we can remove the perceived trade-off between training and test
data performance. The opposite effect is seen with Metric regularization on the large regime
model. In this case we note that the final weight norm is significantly larger than the other
regularized large regime models but we see a decrease in both training and test accuracy
when using the Metric learning rule.

Ultimately the results on the MNIST dataset agree with those of the XOR and XORD results.
The key points so far being, that small regime models generalize better than large regime
models. Secondly, Metric regularization is damaging to training and test accuracy while
some form of selective regularization can nearly replicate the generalizability of small regime
models from a large initialization. Lastly, that while the norm of the model parameters is
generally a good indication of generalizability, using fewer significant parameters to model
the data is the effective way to reduce the norm compared to generally reducing all parameter
values independently.

5.5 Synthetic Dataset

To discuss the results of the synthetic regression dataset we again begin by looking at the
training error of both the Tanh and ReLU based models in Figures 5.23 and 5.26 respectively,
since the observations are similar for both. Firstly, we see that Metric regularization has a
detrimental effect on the training error regardless of the regime used to initialize the model.
This effect is particularly clear in Figure 5.26 for the ReLU activation, where L2 regulariza-
tion also appears to increase training error. We do not observe a discrepancy in this case
between the two initialization regimes aside from the fact that the large regime learns faster
in the early stages of training. Looking at the norms for the ReLU models in Figure 5.28
we see the surprising result that while L2 Stopped and L2 Stopped Selective both get lower
training errors, the norm of L2 Stopped is larger than L2 (as expected since regularization is
stopped) while L2 Stopped Selective continues to decrease the norm significantly. This result
shows that it is not the fact that L2 decreases the weight norm too severely for learning to
take place, but rather that it does so indiscriminately which hinders the model from reaching
lower training errors. This is supported by the fact that Selective L2 is still able to achieve
0 training error with no variance by the end of training.

Looking at the test errors in Figures 5.24 and 5.27 we see the same observations noted
for the other datasets. Namely that the large regime SGD model performs poorly and
clearly overfits while small regime SGD obtains the lowest test error. We also see again
that Selective L2, L2 Stopped and L2 Stopped Selective are capable of nearly matching the
test error of small regime SGD. L2 regularization also improves the generalizability of the
models but not to the same degree as the other regularization methods mentioned, aside
from metric regularization. This dataset quite clearly shows the source of the perception
that there is a trade-off between training and test error. It appears from these results using

64

Figure 5.23: Mean Train Errors for Synthetic data with Tanh Activation over 30 runs.
Shaded region is 2 standard deviations. Tuples in the legend represent the ranking of the
learning rule based on minimum error as (training data ranking, test data ranking).

L2 regularization that this trade-off exists, however, we see with the other regularizers that
it is possible to decrease the models’ weight norms far more than what L2 is able to, also
decreasing test error significantly, without increasing training error. This also reflects the
selective nature of the implicit regularization from small weight initialization, since on this
dataset it appears that to obtain low training error, test error and weight norms the model
would have to be selective about the number of significant parameters it uses, reinforcing
our qualitative observations of the input-to-hidden layer weights on the XOR and XORD
tasks.

65

Figure 5.24: Mean Test Errors for Synthetic data with Tanh Activation over 30 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on minimum error as (training data ranking, test data ranking).

Figure 5.25: Mean Parameter Norms for Synthetic data with Tanh Activation over 30 runs.
Shaded region is 2 standard deviations. Tuples in the legend represent the ranking of the
learning rule based on minimum error as (training data ranking, test data ranking).

66

Figure 5.26: Mean Train Errors for Synthetic data with ReLU Activation over 30 runs.
Shaded region is 2 standard deviations. Tuples in the legend represent the ranking of the
learning rule based on minimum error as (training data ranking, test data ranking).

Figure 5.27: Mean Test Errors for Synthetic data with ReLU Activation over 30 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on minimum error as (training data ranking, test data ranking).

67

Figure 5.28: Mean Parameter Norms for Synthetic data with ReLU Activation over 30 runs.
Shaded region is 2 standard deviations. Tuples in the legend represent the ranking of the
learning rule based on minimum error as (training data ranking, test data ranking).

5.6 CIFAR-10 Dataset

We now present the results of our final experiment. We again begin with the training errors
for the Tanh and ReLU models in Figures 5.29 and 5.32. We see that all learning rules are
able to achieve 100% training accuracy on CIFAR-10 except for SGD from the large regime
with ReLU activation. This is the result of a single bad run where the training diverged,
which also explains the high variance of this learning rule. It appears that all forms of reg-
ularization increase the variance of individual epochs’ accuracies. This results in the mean
accuracies being lower than 100%, but we do see that at some point all of these models
achieve a mean accuracy of 100% and all remain above 90% for the majority of training.
The only regularizer that does not seem to increase training accuracy variance is the Metric
regularizer. Looking at the norms in Figures 5.31 and 5.34 we see that the Metric regularizer
had very little effect on the norm of the large regime model which indicates that when we set
the hyper-parameters, increasing the Metric regularization rate made training unstable or
resulted in the models diverging. For this dataset the optimal hyper-parameter resulted in
a marginal impact of the Metric regularization compared to unregularized SGD. Finally, we
see that the large regime initialization does speed up learning in the early stages of training
compared to the small initialization regime.

68

Figure 5.29: Mean Train Accuracy for CIFAR-10 with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

Looking at the test accuracies in Figure 5.30 and 5.33 we see again that SGD and Metric
regularization with large regime initialization generalize worse than all other learning rules.
Aside from Metric regularization all regularization methods improve generalization. With
Tanh activation these learning rules achieve similar test accuracy to the small regime SGD
model, while with ReLU they are consistently 2% to 5% lower than the small regime SGD
model. We do see, however, that L2 regularization has higher variance in certain epochs
than the other successful regularizers which indicates the fragility of the method. The fact
that the successful regularizers generalize to a similar degree is likely due to the fact that the
network used is quite small relative to the complexity of the dataset. Thus, the full capacity
of the model was being used regardless of the regularizer, and controlling the magnitude
of the parameter norm was all that was necessary. This model is still sufficient for us to
observe the negative effect of large regime initialization on generalization and the inability
of the Metric regularizer to offer a stable regularization method. A final observation from
the norms of the parameters in Figure 5.31 is that L2, L2 Stopped, Selective L2 and L2
Stopped Selective converge to lower norm solutions that small regime SGD while achieving
comparable performance on both training and test accuracy. This indicates that in some
cases small regime SGD does not always find the minimum-norm solution, motivating the
use of regularizers, but also shows that within a certain range increasing the weight norm
has little effect on the generalizability of the models.

69

Figure 5.30: Mean Test Accuracy for CIFAR-10 with Tanh Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

Figure 5.31: Mean Parameter Norms for CIFAR-10 with Tanh Activation over 10 runs.
Shaded region is 2 standard deviations. Tuples in the legend represent the ranking of the
learning rule based on maximum accuracy as (training data ranking, test data ranking).

70

Figure 5.32: Mean Train Accuracy for CIFAR-10 with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

Figure 5.33: Mean Test Accuracy for CIFAR-10 with ReLU Activation over 10 runs. Shaded
region is 2 standard deviations. Tuples in the legend represent the ranking of the learning
rule based on maximum accuracy as (training data ranking, test data ranking).

71

Figure 5.34: Mean Parameter Norms for CIFAR-10 with ReLU Activation over 10 runs.
Shaded region is 2 standard deviations. Tuples in the legend represent the ranking of the
learning rule based on maximum accuracy as (training data ranking, test data ranking).

5.7 Eigenvalues from Hessian of Loss

In this section we use the Memory Efficient Power Method shown in Algorithm 1 to calculate
the Eigenvalues of the Hessian of the loss of our NNs. We present a histogram of the mean
Eigenvalues in descending order with 2 standard deviations on the error bars. Eigenvalues
are calculated at the end of training and are only calculated relative to the loss portion
of any of the update rules, to avoid regularization terms from skewing the results. These
Eigenvalues are averaged over the repeated trainings of the NNs as described in Section 4.4.
For brevity we include a selection of these plots which are representative of our findings.

We first consider the results of the NN with the Tanh activation trained to perform the XOR
task. These results are shown in Figure 5.35. Our first observation is that models trained
from the small regime have lower Eigenvalues than large regime models. Since the other
sections of this chapter showed the implicit regularization of small regime models and their
natural propensity to generalize, this observation supports the notion that small Eigenvalues
correspond to better generalizability of the model. This is also supported by the fact that the
SGD and Metric learning rules from the large regime tend to generalize the worst and have
the largest Eigenvalues in Figure 5.35. The L2 and Selective L2 learning rules from the large
regime also have large Eigenvalues compared to the small regime models. These two learning
rules, however, generalize well in our other experiments and Selective L2 in particular often

72

matches the performance of small regime models on training and test data. This contradicts
the notion that smaller Eigenvalues correspond to models which generalize better. The fact
that L2 and Selective L2 have similar Eigenvalues also reflects that on this dataset the Eigen-
values do not reflect the difference between sparsity and low-norm methods of regularization.
From these results it seems that small Eigenvalues are a strong predictor of a model which
generalizes well, however, models with large Eigenvalues do not necessarily generalize poorly.

Now consider the results of the MNIST dataset with the Tanh activation shown in Figure
5.36. We again see that the small regime has smaller Eigenvalues, however, in this case
the discrepancy between the regimes is far less severe. We see instead that the Metric and
Selective L2 learning rules with the large regime have far larger Eigenvalues than the other
learning rules, even compared to L2 regularization. These two learning rules have very
different test accuracies on MNIST with the Tanh activation. As shown in Figure 5.18 Selec-
tive L2 generalizes well and Metric regularization generalizes poorly. This is another result
showing that large Eigenvalues are not necessarily correlated with poor generalizability. The
difference in the Eigenvalues for L2 and Selective L2 in this case is also interesting as it
seems that by being selective with the regularization we guide the model into sharper (less
flat) areas of the loss landscape. This is likely due to Selective L2 forcing the model to rely
heavily on a subset of parameters and so the loss is particularly sensitive to these parame-
ters. This then increases the curvature in the directions of parameter space corresponding
to those parameters.

For the results on the Synthetic dataset with the ReLU activation shown in Figure 5.37,
firstly we see that there is only one dominant Eigenvalue for each of the learning rules. This
is in line with previous work [Gur-Ari et al. 2018] which showed that the number of significant
Eigenvalues from the Hessian of the loss of an NN matches the number of output neurons
of the NN. Secondly, for this dataset and architecture we see no discrepancy between the
Eigenvalues from the small and large regimes with SGD. The two regimes are apparent when
using Metric regularization. We also note that Metric regularization increases the variance
in the Eigenvalues compared to SGD. This is significant as it shows the inconsistency in the
final parametrization of the models trained with Metric regularization. These results again
show that generalizability is not correlated to the Eigenvalues of the Hessian as SGD from
the small regime generalizes significantly better than SGD from the large regime for this
dataset, as can be seen in Figure 5.27.

Finally, Figure 5.38 shows the results from the CIFAR-10 dataset with the NN using the
ReLU activation function. These results support the observations above. It is apparent from
these results that this dataset results in a large variance in the Eigenvalues regardless of the
learning rules. The variance is particularly large with Metric regularization from the large
regime. We see that this model achieves the tied-best training accuracy but second worst
test accuracy. Thus, the variance in the Eigenvalues is likely due to the sensitivity of the

73

(a) SGD (Small Regime). (b) SGD (Large Regime).

(c) Metric (Small Regime). (d) Metric (Large Regime).

(e) L2 (Large Regime). (f) Selective L2 (Large Regime).

Figure 5.35: Means for the 3-top Eigenvalues from the Hessian of the loss function for the
NN trained on the XOR task with the Tanh activation using the indicated learning rule.
Black lines through the middle of each bar reflect 2 standard deviations. Note the difference
in the scales of the y-axes of the plots.

74

(a) SGD (Small Regime). (b) SGD (Large Regime).

(c) Metric (Small Regime). (d) Metric (Large Regime).

(e) L2 (Large Regime). (f) Selective L2 (Large Regime).

Figure 5.36: Means for the 10-top Eigenvalues from the Hessian of the loss function for the
NN trained on MNIST with the Tanh activation using the indicated learning rule. Black
lines through the middle of each bar reflect 2 standard deviations. Note the difference in the
scales of the y-axes of the plots. Tuples in the title represent the ranking of the learning rule
based on maximum accuracy in the original experiment as (training data ranking, test data
ranking).

75

(a) SGD (Small Regime). (b) SGD (Large Regime).

(c) Metric (Small Regime). (d) Metric (Large Regime).

Figure 5.37: Means for the 10-top Eigenvalues from the Hessian of the loss function for the
NN trained on the Synthetic dataset with the ReLU activation using the indicated learning
rule. Black lines through the middle of each bar reflect 2 standard deviations. Note the
difference in the scales of the y-axes of the plots. Tuples in the title represent the ranking
of the learning rule based on minimum error in the original experiment as (training data
ranking, test data ranking).

76

(a) SGD (Small Regime). (b) SGD (Large Regime).

(c) Metric (Small Regime). (d) Metric (Large Regime).

(e) L2 (Large Regime). (f) Selective L2 (Large Regime).

(g) L2 Stopped (Large Regime). (h) L2 Stopped Selective (Large Regime).

Figure 5.38: Means for the 10-top Eigenvalues from the Hessian of the loss function for the
NN trained on CIFAR-10 with the ReLU activation using the indicated learning rule. Black
lines through the middle of each bar reflect 2 standard deviations. Note the difference in the
scales of the y-axes of the plots. Tuples in the title represent the ranking of the learning rule
based on maximum accuracy as (training data ranking, test data ranking).

77

parametrizations found using Metric regularization to the training data and initialization.
As a result the parameters learned by the model between runs are inconsistent and have
very different final Eigenvalues for the Hessian. We also note that in spite of the larger
and more complicated architecture we use for this dataset, the range of the Eigenvalues is
consistent with the previous results. In particular the smaller Eigenvalues are similar to
the Eigenvalues from the MNIST dataset. The larger Eigenvalues, however, are similar to
the Synthetic dataset. Yet, both of the MNIST and Synthetic architectures are significantly
smaller than the CIFAR-10 architectures. Thus, the Eigenvalues of the Hessian appears to
be an architecture-size agnostic method for analysing an NN. This is a useful property as
it allows us to compare the results of the different datasets in spite of different network
architectures being used for each one. There is still an apparent difference in the range
of Eigenvalues between the learning rules for CIFAR-10. This is likely due to the higher
complexity of the CIFAR-10 dataset and as a result the complexity of the loss landscape.
We again see that comparing the Eigenvalues in Figure 5.38 with the test data accuracies
of the learning rules in Figure 5.33 that the Eigenvalues are not consistent predictors of the
generalizability of the model. In particular we see that regularization tends to increase the
Eigenvalues but improves the generalizability of the models. We also note that the SGD and
Metric learning rules from both the small and large initialization regimes have significantly
different test data accuracies but have a similar scale and distribution to their Eigenvalues.

5.8 Conclusion

In conclusion we find the following observations from our empirical results. Firstly, Metric
regularization is detrimental to both training and test performance irrespective of the dataset
or architecture. The XOR and XORD results indicate that this is due to the fact that Metric
regularization stops the model from learning to rely on a small set of significant features or
patterns. Instead Metric regularization uses more parameters which capture fewer explicit
features in the training dataset. This observation is supported by the generally good perfor-
mance of Selective L2 compared to Metric regularization. Thus, we conclude that adaptively
regularizing the parameters which are more significant for reducing the training loss does
not reduce the generalization gap of the NN and hinders the model from fitting the training
data. Instead adaptively regularizing the insignificant parameters reduces the generalization
gap with no detrimental effect on the training loss.

Secondly, by comparing L2 with Selective L2 (and L2 Stopped with L2 Stopped Selective) we
see that the perceived trade-off between training and test data performance is not necessary
and that the detrimental effect of L2 regularization on training data performance is due to
the fact that it (similar to Metric regularization) regularizes parameters which are significant
for fitting the training data. We see that this does not improve the generalizability of the
model but decreases the training data performance. L2 does still regularize the insignificant

78

(a) Generalization vs Parameter-Norm when
using Tanh Activation

(b) Generalization vs Parameter-Norm when
using ReLU Activation

Figure 5.39: Plots reflecting the correlation between lower parameter-norms and improved
test data performance. For each learning rule we plot the final relative parameter norm vs
the final relative test data performance. For classification tasks the normalized accuracy is
used for test data performance, while regression tasks we multiply the final test error (MSE)
by −1, normalize and then add 1. This is done to make higher test data performance better
for the regression tasks on this axis. To normalize we divide all values by the max value in
the set.

parameters which improves the generalizability of the model. These two separate effects
being observed from L2 gives the appearance of a trade-off, but we can remove all negative
effects on the training data performance by being selective about regularization without hin-
dering the test data performance.

Lastly, as shown in Figure 5.39, we see that the notion of low-norm parametrizations general-
izing better than higher-norm parametrizations is accurate. This is shown by the trend of the
scatter plots to move from the top-left to bottom-right of the plane. The parameter-norm vs
generalizability relationship is most prominent for regression tasks compared to classification
tasks. This effect, however, is limited in two ways. Firstly, past a certain point lowering the
parameter norm does not aid generalizability and can begin to hinder the model. There is a
range of good parameter norms with little difference in the generalizability of models within
this range. Secondly, based on the individual results in previous sections, we see that it is
better for generalizability to reduce the parameter norm by reducing insignificant parameters
more severely and leaving a few significant parameters unaffected. This is in contrast to re-
ducing the parameter norm by decreasing all model parameters. Thus, while the parameter
norm is correlated with better model generalizability, it does not accurately reflect the en-
tire dynamics of the model and is an incomplete measure of the generalizability of the model.

79

The inability of the parameter norm to fully predict generalizability is apparent in the
discrepancy in the generalizability of models which start near the low-norm model parameters
and models which are regularized into the same low-norm region. Our results agree with
previous work [Geiger et al. 2020] that shows that the large regime models generalize worse
than small regime models. An unintuitive result we observe is that L2 regularization is
unable to reproduce the performance of the small regime models on test data. Based on
the results from the XOR and XORD datasets, as well as the Selective L2 regularizer on
all datasets, we can see that this is due to the fact that the small regime models use far
fewer significant parameters than large regime models even when regularized with L2. Only
Selective L2 based regularizers were able to recover near small regime performance for all
datasets even when trained from the large regime. This provides a valuable insight into the
natural ability of NNs to generalize as we see that not only do small regime models find low-
norm solutions, they also naturally maintain sparsity in their parameters. This is a powerful
implicit regularization strategy as the model will naturally only learn the parameters which
are necessary for fitting the training data but avoid overfitting by not increasing its capacity
more than necessary. A summary of all results for the networks using Tanh activation are
shown in Table 5.1 and using ReLU activation in Table 5.2.

80

Table 5.1: Summary of final Training and Test Accuracy/Error (A/E in dataset name) and
epoch time for each learning rule and dataset with the Tanh Network.

Learning Rule Dataset Training A/E Test A/E Param Norm Epoch Time (s)
XOR (A) 1.0± 0 NA 7.18± 0.29 0.0001± 0.0061

XORD (E) 0.74± 0.47 17.64± 4.14 12.18± 0.4 0.0001± 0.03
SGD Small MNIST (A) 0.995± 0.003 0.97± 0.0006 209.89± 0.12 0.31± 0.04

Synthetic (E) 0.107± 0.107 15.22± 0.877 23.49± 0.14 0.148± 0.073
CIFAR-10 (A) 1.0± 0.0 0.673± 0.0065 71.35± 0.44 0.8± 0.018

XOR (A) 1.0± 0 NA 27.08± 4.61 0.0001± 0.0062
XORD (E) 0.0001± 0.0002 60.8± 51.3 90.88± 10.43 0.0001± 0.05

SGD Large MNIST (A) 0.96± 0.0011 0.703± 0.004 4170.87± 2.38 0.32± 0.03
Synthetic (E) 0.252± 0.086 48.64± 4.26 146.22± 0.91 0.145± 0.07
CIFAR-10 (A) 1.0± 0.0 0.6± 0.0008 172.3± 0.1 0.82± 0.01

XOR (A) 1.0± 0 NA 6.83± 0.27 0.0001± 0.004
XORD (E) 1.675± 0.62 16.9± 3.39 11.59± 0.417 0.0004± 0.08

Metric Small MNIST (A) 0.976± 0.003 0.96± 0.0009 187.21± 0.29 0.4± 0.03
Synthetic (E) 27.57± 0.0003 29.09± 0.0002 12.46± 0.1 0.15± 0.073
CIFAR-10 (A) 1.0± 0.0 0.6751± 0.0 71.23± 6.89 1.19± 0.2

XOR (A) 1.0± 0.075 NA 24.12± 4.43 0.0001± 0.0038
XORD (E) 0.0004± 47.67 43.36± 0.47 95.05± 14.5 0.01± 0.148

Metric Large MNIST (A) 0.724± 0.005 0.706± 0.006 3041.36± 18.67 0.4± 0.03
Synthetic (E) 27.56± 0.002 29.09± 0.005 110.02± 2.1 0.148± 0.071
CIFAR-10 (A) 1.0± 0.0 0.6± 0.004 171.53± 0.46 1.18± 0.01

XOR (A) 1.0± 0 NA 18.44± 3.08 0.0001± 0.002
XORD (E) 1.0± 0 73.3± 58.8 92.41± 15.48 0.00005± 0.025

L2 MNIST (A) 0.937± 0.0003 0.934± 0.0007 98.82± 0.05 0.32± 0.03
Synthetic (E) 17.41± 0.09 22.67± 0.16 5.38± 0.01 0.148± 0.073
CIFAR-10 (A) 1.0± 0.0 0.658± 0.02 42.79± 0.03 0.85± 0.06

XOR (A) 0.975± 0.075 NA 16.41± 5.06 0.0002± 0.0055
XORD (E) 0.75± 0.23 19.31± 4.9 34.61± 4.13 0.0004± 0.07

Selective L2 MNIST (A) 0.968± 0.0011 0.96± 0.0008 101.9± 4.36 0.45± 0.02
Synthetic (E) 0.189± 0.186 17.68± 1.38 29.69± 5.09 0.151± 0.073
CIFAR-10 (A) 0.9375± 0.0625 0.66± 0.009 59.59± 0.64 1.35± 0.25

XOR (A) 1.0± 0 NA 20.7± 3.48 0.0001± 0.0
XORD (E) 0.0025± 0.0074 78.53± 82.5 89.72± 13.29 0.0002± 0.0

L2 Stopped MNIST (A) 0.992± 0.0005 0.949± 0.0015 301.89± 0.17 0.3± 0.001
Synthetic (E) 8.46± 6.21 15.23± 7.33 15.91± 0.05 0.148± 0.073
CIFAR-10 (A) 1.0± 0.0 0.675± 0.0078 52.79± 1.37 0.9± 0.02

XOR (A) 1.0± 0 NA 15.23± 3.85 0.0001± 0.0
XORD (E) 0.62± 0.48 28.33± 28.32 47.09± 7.75 0.0003± 0.0

L2 Stopped MNIST (A) 0.968± 0.0003 0.959± 0.0017 124.78± 0.72 0.37± 0.1
Selective Synthetic (E) 11.36± 2.82 16.59± 3.37 11.24± 0.57 0.149± 0.07

CIFAR-10 (A) 0.859± 0.0469 0.62± 0.0013 50.13± 0.06 1.1± 0.2

81

Table 5.2: Summary of final Training and Test Accuracy/Error (A/E in dataset name) and
epoch time for each learning rule and dataset with the ReLU Network.

Learning Rule Dataset Training A/E Test A/E Param Norm Epoch Time (s)
XOR (A) 1.0± 0 NA 5.0± 0.18 0.0± 0.0061

XORD (E) 0.0± 0 6.60± 1.86 8.35± 0.36 0.0± 0.05
SGD Small MNIST (A) 0.998± 0 0.97± 0.0004 209.39± 0.18 0.44± 0.05

Synthetic (E) 0.0± 0.0 23.41± 0.88 16.99± 0.2 0.149± 0.05
CIFAR-10 (A) 1.0± 0.0 0.66± 0.01 65.96± 0.34 0.8± 0.02

XOR (A) 1.0± 0 NA 24.49± 2.92 0.0± 0.0062
XORD (E) 17.87± 1.96 8.56± 0.97 31.89± 3.24 0.0± 0.05

SGD Large MNIST (A) 1.0± 0 0.95± 0.002 4160.49± 3.65 0.42± 0.04
Synthetic (E) 0.002± 0.003 34.09± 1.96 60.29± 0.33 0.148± 0.047
CIFAR-10 (A) 0.9± 0.3 0.49± 0.16 169.67± 0.7 0.82± 0.01

XOR (A) 1.0± 0 NA 4.84± 0.21 0.0± 0.004
XORD (E) 0.20± 0.16 5.50± 1.33 7.3± 0.19 0.01± 0.14

Metric Small MNIST (A) 0.96± 0 0.96± 0.001 181.96± 0.29 0.4± 0.01
Synthetic (E) 22.58± 2.69 24.31± 1.79 20.36± 0.36 0.152± 0.05
CIFAR-10 (A) 1.0± 0.0 0.65± 0.008 66.38± 0.7 1.19± 0.2

XOR (A) 0.95± 0.15 NA 22.16± 2.54 0.0± 0.0038
XORD (E) 38.65± 3.84 10.32± 0.8 25.53± 2.49 0.01± 0.14

Metric Large MNIST (A) 0.99± 0.005 0.92± 0.004 3706.94± 6.79 0.4± 0.008
Synthetic (E) 6.06± 4.13 30.58± 3.79 41.57± 1.06 0.152± 0.045
CIFAR-10 (A) 1.0± 0.0 0.54± 0.02 178.02± 16.35 1.18± 0.01

XOR (A) 1.0± 0 NA 16.77± 2.03 0.0± 0.0025
XORD (E) 21.28± 1.63 8.30± 0.77 21.52± 2.18 0.0± 0.04

L2 MNIST (A) 0.95± 0 0.95± 0.0007 98.86± 0.08 0.34± 0.01
Synthetic (E) 0.42± 0.06 24.83± 0.15 26.17± 0.13 0.149± 0.045
CIFAR-10 (A) 0.99± 0.01 0.62± 0.02 40.03± 0.46 0.85± 0.06

XOR (A) 1.0± 0 NA 14.85± 3.84 0.0± 0.0055
XORD (E) 22.30± 3.14 8.80± 1.25 18.39± 4.45 0.01± 0.14

Selective L2 MNIST (A) 0.99± 0.002 0.95± 0.002 377.67± 2.54 0.48± 0.01
Synthetic (E) 1.41± 0.79 23.60± 1.82 21.60± 1.62 0.151± 0.047
CIFAR-10 (A) 0.97± 0.05 0.63± 0.02 55.41± 0.67 1.35± 0.25

XOR (A) 1.0± 0 NA 18.80± 2.27 0.0± 0.0
XORD (E) 19.26± 1.84 8.37± 1.03 26.21± 2.66 0.0± 0.0

L2 Stopped MNIST (A) 1.0± 0 0.96± 0.002 301.13± 0.26 0.33± 0.01
Synthetic (E) 0.02± 0.03 27.88± 1.43 36.0± 0.33 0.145± 0.073
CIFAR-10 (A) 1.0± 0.0 0.62± 0.02 50.47± 0.88 0.85± 0.02

XOR (A) 1.0± 0 NA 12.63± 2.55 0.0± 0.0
XORD (E) 22.79± 2.04 8.54± 0.71 16.49± 3.19 0.0± 0.0

L2 Stopped MNIST (A) 1.0± 0 0.96± 0.002 212.54± 0.75 0.37± 0.1
Selective Synthetic (E) 1.42± 0.46 23.75± 1.16 20.75± 0.88 0.15± 0.046

CIFAR-10 (A) 0.97± 0.03 0.62± 0.02 48.75± 0.9 1.1± 0.2

82

Chapter 6

Conclusion

In this work we remove the independence assumption (treating parameters as if uncorrelated
or remaining agnostic to parameter correlation) usually employed when regularizing the pa-
rameters of NNs. Since the benefit of a particular value for one parameter in an NN can only
be determined in the context of the other parameter values, the independence assumption
employed by common regularization techniques appears to be unjustified. To remove the
independence assumption we create and evaluate a novel set of regularizers which account
for the effect changing one parameter has on all other parameters in the network and adjust
the regularization rate of that parameter accordingly. The creation of these regularization
methods is the first contribution of this work. The regularizers adjust by either increasing
(Metric regularization) or decreasing (Selective L2) the regularization rate based on the pa-
rameter’s importance to the rest of the model. We experimentally verified the utility of each
regularizer on a set of 5 datasets of varying complexity and interpretability. A key compo-
nent of this work, and our second contribution, is to ensure that all of the novel methods
are of the same time and memory complexity, relative to the number of parameters in the
model, as SGD. This ensures that all of these methods remain practical.

The main, novel regularization method that we investigated in this work is the Metric regu-
larizer. The theoretical analysis and motivation of this regularizer in Chapter 3 is our third
contribution. We show that Metric regularization is the NN equivalent of L2 regularization
on linear regression models and results in the Minimum Mean Squared Error parameters
being learned by the network. Metric regularization more acutely regularizes the parame-
ters that are more impactful to the model’s performance on training data by decreasing the
Riemannian distance of the model parameters as opposed to the Euclidean distance. Thus,
we calculate distance in parameter space but remain consistent with the notion of distance
defined in the loss space. There is a common notion that the generalization gap between
training and test performance of a model is due to the model learning minor, inconsistent
variance in the training data labels and incorrectly attributing it to features of the input
training data. In light of this notion, hindering the model from learning fine details of the
training data should avoid the generalization gap from forming. Contrary to this intuition

83

on overfitting we find that the Metric regularizer does not improve the generalization of NNs.

Instead we find that the regularization methods that adaptively regularize the insignificant
parameters of the model are able to improve generalization. This shows insight into what
affects the generalizability of NNs and we find that it is not enough to indiscriminately re-
duce the norm of the model parameters, but rather to use as few significant parameters as
possible. This reduces the norm of the model parameters, explaining the empirical correla-
tion between the norm and generalizability, but most importantly does not hinder the model
from learning as important parameters are still undisturbed. This challenges the notion that
there is a trade-off between training and test data performance, similar to other works for
example [Zhang et al. 2016 2018], and is the fourth contribution of this work.

This also sheds light on another observed phenomenon that different regimes of initialization
exist. In this work we have called these regimes the small and large initialization regimes
as in each regime the model parameters are initialized with either small or large values. It
has been observed that the large regime overfits, while small regime initialization acts as an
implicit regularization method [Geiger et al. 2020]. Intuition would suggest that it is merely
due to the small weight regime resulting in models with small-norm parameterizations. If
this were the case methods like L2 would be able to replicate the generalizability of small
regime models even when initialized in the large regime. As we show in our own experiments,
this is not the case and L2 is likely to over-regularize the model, hindering performance on
training data, before it is able to meet the test data performance of the small regime models.
Section 5.3 shows that by initializing in the small regime, a second implicit regularization
emerges which is that only parameters that are necessary to fit the training data grow to
be significantly greater than 0. As a result, small regime initialization allows the model to
adaptively determine its own capacity and remain minimal in its use of parameters. In con-
trast we see that the large initialization regime results in the unnecessary model parameters
lingering. While the model can learn to ignore these unnecessary parameters or use them
to capture some of the variance in the training data, their lack of correspondence to stable
input patterns means they likely capture noise in the training data that can result in errors
arising in the test data. This insight into the different initialization regimes is our fifth and
final contribution.

While challenging our intuition on overfitting and generalization, the experimental results of
Chapter 5 also conflict with the theoretical results of Chapter 3. We see that despite Metric
regularization having the MMSE property it fails to increase the test error performances
of any of the models and consistently performs worse than all of the other regularization
methods trained from the large initialization regime. We are left to interpret the possible
reasons for this disconnect between our two primary results and contributions. The main
assumption of the theory is that the model parameters follow a Multivariate Gaussian dis-
tribution and we used this as our prior distribution in deriving the Metric regularizer. This,

84

however, assumes that the second derivatives of an NN’s parameters are constant, which
is not necessarily true. The assumption of constant second derivatives of the parameters
appears again in the use of the Laplace approximation, where a second-order Taylor expan-
sion is used to approximate an exponential integral. If this assumption is incorrect, it has
practical ramifications since the metric tensor is only locally defined. If this metric changes
rapidly in parameter space, then it is difficult to regularize consistently and in a way that
guides the model towards a beneficial area of parameter space. However, if small enough
steps are taken in parameter space, then this is unlikely to be a problem and we would have
observed less stability in the model performance if this had occurred. It is possible that
ignoring higher-order derivatives results in too simple of a theoretical model to understand
the complexity of an NN. This conclusion seems implausible, however, since we find that L2
regularization offers a fair regularization method while being derived from a more simplistic
Gaussian prior. This does suggest that a possible direction of future work is to incorporate
higher-order derivatives into our theoretical analysis and practical algorithms, although this
will be computationally expensive. Our work with Metric regularization and Selective L2
also has relevance to Automatic Relevance Determination (ARD) priors [MacKay and Neal
1994; MacKay 1995]. Thus future work may aim to re-parametrize or adjust Metric regular-
ization to penalise insignificant weights (in a “softer” manner than Selective L2) and, thus,
draw more inspiration from ARD priors.

We may then look to another perspective of the prior other than whether it accurately re-
flects the nature of the model parameters. Namely the use of the prior to impart information
or new restriction on the model which are not implicit in the data. This is the perspective
more commonly associated to regularization. With this perspective it is apparent that the
restriction from the Multivariate Gaussian, while more realistic, does not impart helpful
information on the model. We see that this prior allows less variance away from 0 in the
parameter dimensions that the data places stronger restrictions on and allows significant
variance in the parameter dimensions that the data does not restrict. We see that this prior
imparts the information that the data is not to be trusted, due to the risk of overfitting,
and parameters that are more strongly determined by the data must be regularized. While
intuitive, it is justified to conclude that this is just not useful information to impart based
on our empirical results.

We could phrase the Selective L2 regularizer in the Bayesian framework as a prior distribu-
tion with an independent or isotropic Gaussian prior only over the high-variance parameter
dimensions. With this prior the parameters that are sufficiently restricted by the data have
no prior distribution (equally phrased as a uniform or Jeffreys prior) and the parameters
that are not restricted by the data we then impart the information that restricts them to
be close to 0. It is also justifiable to treat these unimportant parameters as independent
since they do not interact valuably with the other parameters in the model. We conclude
that the Multivariate Gaussian, with the MMSE property, does not aid generalizability due

85

to its inability to impart new information in the model and in particular that high variance
parameters should be kept close to 0. In a model where all parameters are necessary and
the full capacity of the model is used to fit the data then the MMSE property would likely
be more beneficial. In a model that we know to be over-parameterized it is necessary for us
to impart this information at the expense of the MMSE property.

In conclusion, this work shows that it is necessary to consider the correlation between param-
eters of an NN when regularizing the model. This is due to the results showing the benefit
of Selective L2 over L2 regularization and Selective L2 ’s ability to reduce the generalization
gap between the small and large regimes of training. We find that the aim should be to not
regularize the parameters that are more useful given the context of the rest of the model
parameters. Significantly, we see then that the data is capable of restricting the values of the
correlated parameters in the network, and we are left to set restrictions on the uncorrelated
dimensions of the parameter space exclusively. In this work we have presented a varying de-
gree of informative priors, in the form of different regularizers, from uninformative uniform
priors to very informative isotropic Gaussians. We conclude that with NNs the discussion
is more nuanced and that certain dimensions of parameter space require varying degrees of
informative priors. Fortunately, the geometry of the loss landscape provides this information
and we are able to determine which dimensions to regularize and which dimensions to leave
to be restricted by the data. Future work could likely seek to perform certain computations
at a neuronal level which offer a similar implicit regularization effect to Selective L2 regu-
larization by dampening the effect of information coming from unhelpful connections in the
network.

86

References

[Advani and Ganguli 2016] Madhu Advani and Surya Ganguli. Statistical mechanics of op-
timal convex inference in high dimensions. Physical Review X, 6(3):031034, 2016.

[Advani et al. 2013] Madhu Advani, Subhaneil Lahiri, and Surya Ganguli. Statistical me-
chanics of complex neural systems and high dimensional data. Journal of Statistical
Mechanics: Theory and Experiment, 2013(03):P03014, 2013.

[Amari 2016] Shun-ichi Amari. Information geometry and its applications, volume 194.
Springer, 2016.

[Baldi and Sadowski 2013] Pierre Baldi and Peter J Sadowski. Understanding dropout. In
Advances in neural information processing systems, pages 2814–2822, 2013.

[Bansal et al. 2018] Yamini Bansal, Madhu Advani, David D Cox, and Andrew M Saxe.
Minnorm training: an algorithm for training over-parameterized deep neural networks.
arXiv preprint arXiv:1806.00730, 2018.

[Bayes 1763] Thomas Bayes. Lii. an essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john
canton, amfr s. Philosophical transactions of the Royal Society of London, (53):370–
418, 1763.

[Brutzkus and Globerson 2019] Alon Brutzkus and Amir Globerson. Why do larger models
generalize better? a theoretical perspective via the xor problem. In International
Conference on Machine Learning, pages 822–830. PMLR, 2019.

[Carmo 1992] Manfredo Perdigao do Carmo. Riemannian geometry. Birkhäuser, 1992.

[Clevert et al. 2015] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[Dauphin et al. 2014] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point prob-
lem in high-dimensional non-convex optimization. In Advances in neural information
processing systems, pages 2933–2941, 2014.

87

[Dodson and Poston 2013] Christopher Terence John Dodson and Timothy Poston. Ten-
sor geometry: the geometric viewpoint and its uses, volume 130. Springer Science &
Business Media, 2013.

[Fisher 1922] Ronald A Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 222(594-604):309–368, 1922.

[Gauld 1974] David B Gauld. Topological properties of manifolds. The American Mathe-
matical Monthly, 81(6):633–636, 1974.

[Geiger et al. 2020] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Dis-
entangling feature and lazy training in deep neural networks. Journal of Statistical
Mechanics: Theory and Experiment, 2020(11):113301, 2020.

[Geman et al. 1992] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks
and the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

[Glorot and Bengio 2010] Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and statistics, pages 249–256. JMLR
Workshop and Conference Proceedings, 2010.

[Gur-Ari et al. 2018] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent
happens in a tiny subspace. arXiv preprint arXiv:1812.04754, 2018.

[Hartigan 1998] JA Hartigan. The maximum likelihood prior. The annals of statistics,
26(6):2083–2103, 1998.

[Jaynes 1968] Edwin T Jaynes. Prior probabilities. IEEE Transactions on systems science
and cybernetics, 4(3):227–241, 1968.

[Jaynes 2003] Edwin T Jaynes. Probability theory: The logic of science. Cambridge univer-
sity press, 2003.

[Jeffreys 1946] Harold Jeffreys. An invariant form for the prior probability in estimation
problems. Proceedings of the Royal Society of London. Series A. Mathematical and
Physical Sciences, 186(1007):453–461, 1946.

[Jost 2008] Jürgen Jost. Riemannian geometry and geometric analysis, volume 42005.
Springer, 2008.

[Kaplan 1952] Wilfred Kaplan. Advanced calculus. Pearson Education India, 1952.

[Klambauer et al. 2017] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp
Hochreiter. Self-normalizing neural networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 972–981, 2017.

88

[Koenderink and Van Doorn 1992] Jan J Koenderink and Andrea J Van Doorn. Surface
shape and curvature scales. Image and vision computing, 10(8):557–564, 1992.

[Krizhevsky et al. 2009] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. Master’s thesis, 2009.

[Krogh and Hertz 1992] Anders Krogh and John A. Hertz. A simple weight decay can
improve generalization. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, edi-
tors, Advances in Neural Information Processing Systems 4, pages 950–957. Morgan-
Kaufmann, 1992.

[LeCun et al. 2010] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[Ly et al. 2017] Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman,
and Eric-Jan Wagenmakers. A tutorial on fisher information. Journal of Mathematical
Psychology, 80:40–55, 2017.

[Maas et al. 2013] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlin-
earities improve neural network acoustic models. In Proc. icml, volume 30, page 3.
Citeseer, 2013.

[MacKay and Neal 1994] David JC MacKay and Radford M Neal. Automatic relevance
determination for neural networks. In Technical Report in preparation. Cambridge
University, 1994.

[MacKay 1995] David JC MacKay. Probable networks and plausible predictions-a review of
practical bayesian methods for supervised neural networks. Network: computation in
neural systems, 6(3):469, 1995.

[Porteous 2001] Ian R Porteous. Geometric differentiation: for the intelligence of curves
and surfaces. Cambridge University Press, 2001.

[Rao 1945] C.R. Rao. Information and the accuracy attainable in the estimation of statistical
parameters. Bulletin of Calcutta Mathematical Society, 37:81–91, 1945.

[Rissanen 1978] Jorma Rissanen. Modeling by shortest data description. Automatica,
14(5):465–471, 1978.

[Rumelhart et al. 1985] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Technical report, California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[Sagun et al. 2017] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon
Bottou. Empirical analysis of the hessian of over-parametrized neural networks. arXiv
preprint arXiv:1706.04454, 2017.

89

[Skovgaard 1984] Lene Theil Skovgaard. A riemannian geometry of the multivariate normal
model. Scandinavian Journal of Statistics, pages 211–223, 1984.

[Spivak 1970] Michael D Spivak. A comprehensive introduction to differential geometry.
Publish or perish, 1970.

[Zhang et al. 2016] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

[Zhang et al. 2018] Yao Zhang, Andrew M Saxe, Madhu S Advani, and Alpha A Lee.
Energy–entropy competition and the effectiveness of stochastic gradient descent in
machine learning. Molecular Physics, 116(21-22):3214–3223, 2018.

90

	Abstract
	Table of Contents
	Introduction
	Background and Related Work
	Introduction
	Objective Bayesian Statistics and the Jeffreys Prior
	Gradient Descent and Regularization Methods
	Riemannian Geometry

	Theoretical Analysis
	Introduction
	Parameters Along a Path are Correlated
	Effect of Cramér-Rao Lower Bound on Gaussian Distribution
	Fisher Information of Gaussian Likelihood and Posterior Distributions
	Derivation of Metric Regularizer from Bayesian Prior
	Equivalence to MMSE for Linear Regression
	Equivalence to Maximum A Posteriori
	Computing Multiplication of Hessian by a Vector
	Simultaneous Power Method using Hessian Multiplication
	Conclusion

	Experimental Methodology
	Introduction
	Datasets
	XOR and XORD Datasets
	MNIST Datasets
	Synthetic Dataset
	CIFAR-10 Dataset

	Learning Rules
	Experimental Setup

	Experimental Results
	Introduction
	Checking Efficient Power Method
	XOR Datasets
	MNIST Datasets
	Synthetic Dataset
	CIFAR-10 Dataset
	Eigenvalues from Hessian of Loss
	Conclusion

	Conclusion
	References

